We demonstrate a model for stoichiometric and reduced titanium dioxide intended for use in molecular dynamics and other atomistic simulations and based in the polarizable ion tight binding theory. This extends the model introduced in two previous papers from molecular and liquid applications into the solid state, thus completing the task of providing a comprehensive and unified scheme for studying chemical reactions, particularly aimed at problems in catalysis and electrochemistry. As before, experimental results are given priority over theoretical ones in selecting targets for model fitting, for which we used crystal parameters and band gaps of titania bulk polymorphs, rutile and anatase. The model is applied to six low index titania surfaces, with and without oxygen vacancies and adsorbed water molecules, both in dissociated and non-dissociated states. Finally, we present the results of molecular dynamics simulation of an anatase cluster with a number of adsorbed water molecules and discuss the role of edge and corner atoms of the cluster.

1.
T. J.
Sheppard
,
A. Y.
Lozovoi
,
D. L.
Pashov
,
J. J.
Kohanoff
, and
A. T.
Paxton
,
J. Chem. Phys.
141
,
044503
(
2014
).
2.
A. Y.
Lozovoi
,
T. J.
Sheppard
,
D. L.
Pashov
,
J. J.
Kohanoff
, and
A. T.
Paxton
,
J. Chem. Phys.
141
,
044504
(
2014
).
4.
C.
Sun
,
L.-M.
Liu
,
A.
Selloni
,
G. Q.
Lu
, and
S. C.
Smith
,
J. Mater. Chem.
20
,
10319
(
2010
).
5.
C. L.
Pang
,
R.
Lindsay
, and
G.
Thornton
,
Chem. Soc. Rev.
37
,
2328
(
2008
).
6.
C. L.
Pang
,
R.
Lindsay
, and
G.
Thornton
,
Chem. Rev.
113
,
3887
(
2013
).
7.
L.
Goodwin
,
A. J.
Skinner
, and
D. G.
Pettifor
,
Europhys. Lett.
9
,
701
(
1989
).
8.
M. W.
Finnis
,
A. T.
Paxton
,
M.
Methfessel
, and
M.
van Schilfgaarde
,
Phys. Rev. Lett.
81
,
5149
(
1998
).
9.
S.
Fabris
,
A. T.
Paxton
, and
M. W.
Finnis
,
Phys. Rev. B
63
,
941011
(
2001
).
10.
M. W.
Finnis
,
Interatomic Forces in Condensed Matter
(
Oxford University Press
,
Oxford, UK
,
2003
).
11.
A. T.
Paxton
, in
Multiscale Simulation Methods in Molecular Sciences
,
NIC Series
Vol.
42
, edited by
J.
Grotendorst
,
N.
Attig
,
S.
Blügel
, and
D.
Marx
(
Institute for Advanced Simulation
,
Forschungszentrum Julich
,
2009
), pp.
145
174
. Also available on-line at http://webarchiv.fz-juelich.de/nic-series/volume42/volume42.html.
12.
P. A.
Cox
,
Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties
(
Oxford University Press
,
Oxford, UK
,
2010
).
13.
W. A.
Harrison
,
Electronic Structure and the Properties of Solids, the Physics of the Chemical Bond
(
W. H. Freeman and Company
,
San Francisco
,
1980
).
14.
A. T.
Paxton
and
J. J.
Kohanoff
,
J. Chem. Phys.
134
,
044130
(
2011
).
15.
S.
Fabris
,
A. T.
Paxton
, and
M. W.
Finnis
,
Phys. Rev. B
61
,
6617
(
2000
).
16.
N.
Benedek
,
K.
Johnston
, and
A. T.
Paxton
, unpublished results.
17.
S.
Fabris
,
A. T.
Paxton
, and
M. W.
Finnis
,
Acta Mater.
50
,
5171
(
2002
).
18.
H.-P.
Schwefel
,
Numerische Optimierung von Computer–Modellen mittels der Evolutionsstrategie
,
Interdisciplinary Systems Research
Vol.
26
(
Birkhäuser
,
Basle
,
1977
).
19.
H.-P.
Schwefel
,
Evolution and Optimum Seeking (Sixth Generation Computer Technologies)
(
Wiley
,
New York
,
1995
).
20.
J. K.
Burdett
,
T.
Hughbanks
,
G. J.
Miller
,
J. W.
Richardson
, and
J. V.
Smith
,
J. Am. Chem. Soc.
109
,
3639
(
1987
).
21.
J. K.
Dewhurst
and
J. E.
Lowther
,
Phys. Rev. B
54
,
R3673
(
1996
).
22.
L.-C.
Ming
and
M. H.
Manghnani
,
J. Geophys. Res.: Solid Earth
84
,
4777
, doi: (
1979
).
23.
T.
Arlt
,
M.
Bermejo
,
M. A.
Blanco
,
L.
Gerward
,
J. Z.
Jiang
,
J. S.
Olsen
, and
J. M.
Recio
,
Phys. Rev. B
61
,
14414
(
2000
).
24.
J.
Pascual
,
J.
Camassel
, and
H.
Mathieu
,
Phys. Rev. Lett.
39
,
1490
(
1977
).
25.
H.
Tang
,
H.
Berger
,
P.
Schmid
,
F.
Lévy
, and
G.
Burri
,
Solid State Commun.
87
,
847
(
1993
).
26.
S. J.
Smith
,
R.
Stevens
,
S.
Liu
,
G.
Li
,
A.
Navrotsky
,
J.
Boerio-Goates
, and
B. F.
Woodfield
,
Am. Miner.
94
,
236
(
2009
).
27.
Empirical tight binding (TBE) and full potential LMTO computer programs (LMF) are parts of the LM electronic structure package (http://www.lmsuite.org).
28.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
29.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
,
Mol. Phys.
87
,
1117
(
1996
).
30.
J.
Muscat
,
V.
Swamy
, and
N. M.
Harrison
,
Phys. Rev. B
65
,
224112
(
2002
).
31.
F.
Labat
,
P.
Baranek
,
C.
Domain
,
C.
Minot
, and
C.
Adamo
,
J. Chem. Phys.
126
,
154703
(
2007
).
32.
L.
Chiodo
,
J. M.
Garcia-Lastra
,
A.
Iacomino
,
S.
Ossicini
,
J.
Zhao
,
H.
Petek
, and
A.
Rubio
,
Phys. Rev. B
82
,
045207
(
2010
).
33.
M.
Landmann
,
E.
Rauls
, and
W. G.
Schmidt
,
J. Phys.: Condens. Matter
24
,
195503
(
2012
).
34.
G.
Dolgonos
,
B.
Aradi
,
N. H.
Moreira
, and
T.
Frauenheim
,
J. Chem. Theory Comput.
6
,
266
(
2010
).
35.
F.
Labat
,
P.
Baranek
, and
C.
Adamo
,
J. Chem. Theory Comput.
4
,
341
(
2008
).
36.
M.
Lazzeri
,
A.
Vittadini
, and
A.
Selloni
,
Phys. Rev. B
63
,
155409
(
2001
).
37.
M.
Lazzeri
,
A.
Vittadini
, and
A.
Selloni
,
Phys. Rev. B
65
,
119901
(
2002
) [Erratum].
38.
A.
Kiejna
,
T.
Pabisiak
, and
S. W.
Gao
,
J. Phys.: Condens. Matter
18
,
4207
(
2006
).
39.
P. M.
Kowalski
,
B.
Meyer
, and
D.
Marx
,
Phys. Rev. B
79
,
115410
(
2009
).
40.
L.
Mino
,
G.
Spoto
,
S.
Bordiga
, and
A.
Zecchina
,
J. Phys. Chem. C
117
,
11186
(
2013
).
41.
T. R.
Esch
,
I.
Gadaczek
, and
T.
Bredow
,
Appl. Surf. Sci.
288
,
275
(
2014
).
42.
X.-Q.
Gong
and
A.
Selloni
,
J. Phys. Chem. B
109
,
19560
(
2005
).
43.
A.
Marmier
,
A.
Lozovoi
, and
M. W.
Finnis
,
J. Eur. Ceram. Soc.
23
,
2729
(
2003
).
44.
R.
Lindsay
,
A.
Wander
,
A.
Ernst
,
B.
Montanari
,
G.
Thornton
, and
N. M.
Harrison
,
Phys. Rev. Lett.
94
,
246102
(
2005
).
45.
A. Y.
Lozovoi
,
A.
Alavi
, and
M. W.
Finnis
,
Phys. Rev. Lett.
85
,
610
(
2000
).
46.
H.
Cheng
and
A.
Selloni
,
J. Chem. Phys.
131
,
054703
(
2009
).
47.
T.
Pabisiak
and
A.
Kiejna
,
Solid State Commun.
144
,
324
(
2007
).
48.
P.
Scheiber
,
M.
Fidler
,
O.
Dulub
,
M.
Schmid
,
U.
Diebold
,
W.
Hou
,
U.
Aschauer
, and
A.
Selloni
,
Phys. Rev. Lett.
109
,
136103
(
2012
).
49.
A.
Vittadini
,
M.
Casarin
, and
A.
Selloni
,
Theor. Chem. Acc.
117
,
663
(
2007
).
50.
M. B.
Hugenschmidt
,
L.
Gamble
, and
C. T.
Campbell
,
Surf. Sci.
302
,
329
(
1994
).
51.
52.
D.
Brinkley
,
M.
Dietrich
,
T.
Engel
,
P.
Farrall
,
G.
Gantner
,
A.
Schafer
, and
A.
Szuchmacher
,
Surf. Sci.
395
,
292
(
1998
).
53.
H.
Kamisaka
and
K.
Yamashita
,
Surf. Sci.
601
,
4824
(
2007
).
54.
P. J. D.
Lindan
and
C.
Zhang
,
Phys. Rev. B
72
,
075439
(
2005
).
55.
A.
Tilocca
,
C.
Di Valentin
, and
A.
Selloni
,
J. Phys. Chem. B
109
,
20963
(
2005
).
56.
W.
Zhang
,
J.
Yang
,
Y.
Luo
,
S.
Monti
, and
V.
Carravetta
,
J. Chem. Phys.
129
,
064703
(
2008
).
57.
M. F.
Camellone
,
P. M.
Kowalski
, and
D.
Marx
,
Phys. Rev. B
84
,
035413
(
2011
).
58.
Y.
He
,
A.
Tilocca
,
O.
Dulub
,
A.
Selloni
, and
U.
Diebold
,
Nat. Mater.
8
,
585
(
2009
).
59.
G. S.
Herman
,
Z.
Dohnálek
,
N.
Ruzycki
, and
U.
Diebold
,
J. Phys. Chem. B
107
,
2788
(
2003
).
60.
Z.
Zhao
,
Z.
Li
, and
Z.
Zou
,
J. Phys. Chem. C
116
,
7430
(
2012
).
61.
A. T.
Paxton
and
L.
Thiên-Nga
,
Phys. Rev. B
57
,
1579
(
1998
).
62.
We do not have the H2 molecule either since we neglect any attraction between hydrogen atoms, otherwise we could have estimated the chemical potential of O, μO, as the difference between H2O and H2. The best estimation we could make is to use experimental energy of O2 dissociation (with vibrations removed), 5.230 eV [
Y.
Zhang
and
W.
Yang
,
Phys. Rev. Lett.
80
,
890
(
1998
)], and promotion energy of oxygen atom from the triplet to singlet state, 2.399 eV (CCSD, our own calculation) to arrive at the absolute vacancy formation energy on rutile(110) Ef(VO) = 2.39 eV.
63.
J.
VandeVondele
, private communication (
2013
).
64.
A.
Fujishima
and
K.
Honda
,
Nature (London)
238
,
37
(
1972
).
65.
L. E.
Walle
,
A.
Borg
,
P.
Uvdal
, and
A.
Sandell
,
Phys. Rev. B
80
,
235436
(
2009
).
66.
D. A.
Duncan
,
F.
Allegretti
, and
D. P.
Woodruff
,
Phys. Rev. B
86
,
045411
(
2012
).
67.
L. E.
Walle
,
D.
Ragazzon
,
A.
Borg
,
P.
Uvdal
, and
A.
Sandell
,
Surf. Sci.
621
,
77
(
2014
).
68.
D. R.
Hummer
,
J. D.
Kubicki
,
P. R. C.
Kent
,
J. E.
Post
, and
P. J.
Heaney
,
J. Phys. Chem. C
113
,
4240
(
2009
).
69.
M. A.
Henderson
,
Surf. Sci. Rep.
66
,
185
(
2011
).
70.
H.
Zhang
and
J. F.
Banfield
,
J. Mater. Chem.
8
,
2073
(
1998
).
71.
B.
Montanari
and
N. M.
Harrison
,
J. Phys.: Condens. Matter
16
,
273
(
2004
).
72.
G.
Lever
,
D. J.
Cole
,
N. D. M.
Hine
,
P. D.
Haynes
, and
M. C.
Payne
,
J. Phys.: Condens. Matter
25
,
152101
(
2013
).
73.
Y.
Zhou
and
K. A.
Fichthorn
,
J. Phys. Chem. C
116
,
8314
(
2012
).
74.
75.
The definition of bonds in our study is based on the position of the first minimum in radial distribution functions for respective species, which are: 3.4 Å for Ti–Ti, 2.7 Å for Ti–Ot, 2.9 Å for Ti–Ow, 3.6 Å for Ot–Ot, and 3.2 Å for both Ot–Ow and Ow–Ow. The Ot–Ow and Ow–Ow distances in particular are used in the definition of water–water and water–titania H-bonds together with the 30° criterion for the
$\widehat{\mathrm{HOO}}$
HOO ̂
angle [
A.
Luzar
and
D.
Chandler
,
Phys. Rev. Lett.
76
,
928
(
1996
)].
76.
S.
Sanna
,
B.
Hourahine
,
T.
Gallauner
, and
T.
Frauenheim
,
J. Phys. Chem.
111
,
5665
(
2007
).
77.
G. K. H.
Madsen
,
E. J.
McEniry
, and
R.
Drautz
,
Phys. Rev. B
83
,
184119
(
2011
).
78.
A.
Urban
,
M.
Reese
,
M.
Mrovec
,
C.
Elsässer
, and
B.
Meyer
,
Phys. Rev. B
84
,
155119
(
2011
).
79.
N.
Hatcher
,
G. K.
Madsen
, and
R.
Drautz
,
Phys. Rev. B
86
,
155115
(
2012
).
You do not currently have access to this content.