As is now well established, a first order expansion of the Hohenberg–Kohn total energy density functional about a trial input density, namely, the Harris–Foulkes functional, can be used to rationalize a non self consistent tight binding model. If the expansion is taken to second order then the energy and electron density matrix need to be calculated self consistently and from this functional one can derive a charge self consistent tight binding theory. In this paper we have used this to describe a polarizable ion tight binding model which has the benefit of treating charge transfer in point multipoles. This admits a ready description of ionic polarizability and crystal field splitting. It is necessary in constructing such a model to find a number of parameters that mimic their more exact counterparts in the density functional theory. We describe in detail how this is done using a combination of intuition, exact analytical fitting, and a genetic optimization algorithm. Having obtained model parameters we show that this constitutes a transferable scheme that can be applied rather universally to small and medium sized organic molecules. We have shown that the model gives a good account of static structural and dynamic vibrational properties of a library of molecules, and finally we demonstrate the model's capability by showing a real time simulation of an enolization reaction in aqueous solution. In two subsequent papers, we show that the model is a great deal more general in that it will describe solvents and solid substrates and that therefore we have created a self consistent quantum mechanical scheme that may be applied to simulations in heterogeneous catalysis.

1.
A. Y.
Lozovoi
,
T. J.
Sheppard
,
D. L.
Pashov
,
J. J.
Kohanoff
, and
A. T.
Paxton
,
J. Chem. Phys.
141
,
044504
(
2014
).
2.
A. Y.
Lozovoi
,
D. L.
Pashov
,
T. J.
Sheppard
,
J. J.
Kohanoff
, and
A. T.
Paxton
,
J. Chem. Phys.
141
,
044505
(
2014
).
3.
A. T.
Paxton
and
J. J.
Kohanoff
,
J. Chem. Phys.
134
,
044130
(
2011
).
4.
J. J.
Kohanoff
,
Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods
(
Cambridge University Press
,
Cambridge
,
2006
).
5.
J. A.
Pople
,
D. P.
Santry
, and
G. A.
Segal
,
J. Chem. Phys.
43
,
S129
(
1965
).
6.
J. A.
Pople
and
G. A.
Segal
,
J. Chem. Phys.
43
,
S136
(
1965
).
7.
J. A.
Pople
,
D. L.
Beveridge
, and
P. A.
Dobosh
,
J. Chem. Phys.
47
,
2026
(
1967
).
8.
R. C.
Bingham
,
M. J. S.
Dewar
, and
D. H.
Lo
,
J. Am. Chem. Soc.
97
,
1294
(
1975
).
9.
M. J. S.
Dewar
and
W.
Thiel
,
J. Am. Chem. Soc.
99
,
4899
(
1977
).
10.
W.
Thiel
,
J. Am. Chem. Soc.
103
,
1413
(
1981
).
11.
M. J. S.
Dewar
,
E. G.
Zoebisch
,
E. F.
Healy
, and
J. J. P.
Stewart
,
J. Am. Chem. Soc.
107
,
3902
(
1985
).
12.
J. J. P.
Stewart
,
J. Comput. Chem.
10
,
209
(
1989
).
13.
J. J. P.
Stewart
,
J. Mol. Model.
13
,
1173
(
2007
).
14.
J. J. P.
Stewart
,
J. Mol. Model.
19
,
1
(
1989
).
15.
A. P.
Sutton
,
M. W.
Finnis
,
D. G.
Pettifor
, and
Y.
Ohta
,
J. Phys. C: Solid State Phys.
21
,
35
(
1988
).
16.
W. M. C.
Foulkes
and
R.
Haydock
,
Phys. Rev. B
39
,
12520
(
1989
).
17.
S.
Sanna
,
B.
Hourahine
,
T.
Gallauner
, and
T.
Frauenheim
,
J. Phys. Chem.
111
,
5665
(
2007
).
18.
A. T.
Paxton
and
M. W.
Finnis
,
Phys. Rev. B
77
,
024428
(
2008
).
19.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
20.
M. W.
Finnis
,
A. T.
Paxton
,
M.
Methfessel
, and
M.
van Schilfgaarde
,
Phys. Rev. Lett.
81
,
5149
(
1998
).
21.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
,
Phys. Rev. B
58
,
7260
(
1998
).
22.
M. W.
Finnis
,
Interatomic Forces in Condensed Matter
(
Oxford University Press
,
Oxford, UK
,
2003
).
23.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
24.
25.
J. C.
Slater
and
G. F.
Koster
,
Phys. Rev.
94
,
1498
(
1954
).
26.
W. A.
Harrison
,
Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond
(
Freeman
,
San Francisco
,
1980
).
27.
A. T.
Paxton
, in
Multiscale Simulation Methods in Molecular Sciences
,
NIC Series
Vol.
42
, edited by
J.
Grotendorst
,
N.
Attig
,
S.
Blügel
, and
D.
Marx
(
Institute for Advanced Simulation
,
Forschungszentrum Julich
,
2009
), pp.
145
174
, see http://webarchiv.fz-juelich.de/nic-series/volume42/volume42.html.
28.
A. P.
Horsfield
,
A. M.
Bratkovsky
,
M.
Fearn
,
D. G.
Pettifor
, and
M.
Aoki
,
Phys. Rev. B
53
,
12694
(
1996
).
29.
A. P.
Horsfield
,
A. M.
Bratkovsky
,
D. G.
Pettifor
, and
M.
Aoki
,
Phys. Rev. B
53
,
1656
(
1996
).
30.
L.
Goodwin
,
A. J.
Skinner
, and
D. G.
Pettifor
,
Europhys. Lett.
9
,
701
(
1989
).
31.
W. A.
Harrison
,
Phys. Rev. B
31
,
2121
(
1985
).
32.
J. A.
Majewski
and
P.
Vogl
,
Phys. Rev. Lett.
57
,
1366
(
1986
).
33.
J. A.
Majewski
and
P.
Vogl
,
The Structures of Binary Compounds
(
North-Holland
,
Amsterdam
,
1989
), pp.
287
362
.
34.
P. K.
Schelling
,
N.
Yu
, and
J. W.
Halley
,
Phys. Rev. B
58
,
1279
(
1998
).
35.
S.
Fabris
,
A. T.
Paxton
, and
M. W.
Finnis
,
Phys. Rev. B
61
,
6617
(
2000
).
36.
M. W.
Finnis
,
A. T.
Paxton
,
M.
Methfessel
, and
M.
van Schilfgaarde
, in
Tight Binding Approach to Computational Materials Science
,
MRS Symposium Proceedings
Vol.
491
, edited by
P. E. A.
Turchi
,
A.
Gonis
, and
L.
Colombo
(
Materials Research Society
,
Pittsburgh, PA
,
1998
), pp.
265
274
.
37.
O. K.
Andersen
, in
The Electronic Structure of Complex Systems
, edited by
P.
Phariseau
and
W. M.
Temmerman
(
Plenum
,
New York
,
1984
), p.
11
.
38.
E.
Bott
,
M.
Methfessel
,
W.
Krabs
, and
P. C.
Schmidt
,
J. Math. Phys.
39
,
3393
(
1998
).
39.
A. T.
Paxton
,
T. N.
Todorov
, and
A. M.
Elena
,
Chem. Phys. Lett.
483
,
154
(
2009
).
40.
H.-P.
Schwefel
,
Numerische Optimierung von Computer–Modellen mittels der Evolutionsstrategie
,
Interdisciplinary Systems Research
Vol.
26
(
Birkhäuser
,
Basle
,
1977
).
41.
H.-P.
Schwefel
,
Evolution and Optimum Seeking (Sixth Generation Computer Technologies)
(
Wiley
,
New York
,
1995
).
42.
A. P.
Horsfield
,
P. D.
Godwin
,
D. G.
Pettifor
, and
A. P.
Sutton
,
Phys. Rev. B
54
,
15773
(
1996
).
43.
M.
Valiev
,
E.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T.
Straatsma
,
H. V.
Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T.
Windus
, and
W.
de Jong
,
Comput. Phys. Commun.
181
,
1477
(
2010
).
44.
A. J.
Petro
,
J. Amer. Chem. Soc.
80
,
4230
(
1958
).
45.
P.
Lazzeretti
,
R.
Zanasi
, and
W. T.
Raynes
,
J. Chem. Phys.
87
,
1681
(
1987
).
46.
R.
McWeeney
,
Coulson's Valence
(
Oxford University Press
,
Oxford
,
1979
).
47.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
48.
Tables of Molecular Vibrational Frequencies Consolidated
, edited by
T.
Shimanouchi
(
National Bureau of Standards
,
Washington, D.C.
,
1972
), Vol.
I
.
49.
G. P.
Srivastava
,
The Physics of Phonons
(
Taylor and Francis
,
Abingdon
,
1990
).
50.
NIST Chemistry WebBook
,
NIST Standard Reference Database Number 69
, edited by
P. J.
Linstrom
and
W. G.
Mallard
(
National Institute of Standards and Technology
,
2011
), see http://webbook.nist.gov/chemistry.
51.
C. S.
Cucinotta
,
A.
Ruini
,
A.
Catellani
, and
A.
Stirling
,
ChemPhysChem
7
,
1229
(
2006
).
52.
S.
Grimme
,
WIREs Comput. Mol. Sci.
1
,
211
(
2011
).
You do not currently have access to this content.