Time-of-flight mass spectra of cyclopentanone and its clusters cooled in a supersonic jet expansion have been measured following 4-, 3-, and 2-photon ionizations by the 2nd, 3rd, and 4th harmonic wavelengths, respectively, of a Q-switched Nd:YAG laser. The mass spectra reveal signatures of energetically favored keto to enol tautomerization of the molecular ion leading to intermolecular proton transfer, and this observation is found sharply dependent on the ionization wavelengths used. Electronic structure calculation predicts that in spite of the energetic preference, keto-enol conversion barrier of isolated molecular ion is high. However, the barrier is significantly reduced in a CH⋯O hydrogen-bonded dimer of the molecule. The transition states associated with tautomeric conversion of both cyclopentanone monomer and dimer cations have been identified by means of intrinsic reaction co-ordinate calculation. In a supersonic jet expansion, although a weakly bound dimer is readily generated, the corresponding cation and also the protonated counterpart are observed only for ionization by 532 nm. For other two ionization wavelengths, these species do not register in the mass spectra, where the competing reaction channels via α-cleavage of the ring become dominant. In contrast to the report of a recent study, we notice that the intact molecular ion largely survives fragmentations when ionized from the 2-photon resonant 3p Rydberg state as intermediate using nanosecond laser pulses, and the corresponding resonant 3-photon ionization spectrum has been recorded probing the intact molecular ion.

1.
J. M.
Berg
,
J. L.
Tymoczko
, and
L.
Stryer
,
Biochemistry
, 5th ed. (
W. H. Freeman and Company and Sumanas, Inc.
,
New York
,
2002
).
2.
M.
Chattoraj
,
B. A.
King
,
G. U.
Bublitz
, and
S. G.
Boxer
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
8362
(
1996
).
3.
P.
Mitchell
,
Nature (London)
191
,
144
(
1961
).
4.
T.
Chakraborty
,
Charge Migration in DNA: Perspectives from Physics, Chemistry, and Biology
(
Springer-Verlag
,
Berlin, Heidelberg
,
2007
).
5.
R. A.
Relph
,
T. L.
Guasco
,
B. M.
Elliott
,
M. Z.
Kamrath
,
A. B.
McCoy
,
R. P.
Steele
,
D. P.
Schofield
,
K. D.
Jordan
,
A. A.
Viggiano
,
E. E.
Ferguson
, and
M. A.
Johnson
,
Science
327
,
308
(
2010
).
6.
P. M.
Huang
,
Y.
Li
, and
M. E.
Sumner
,
Handbook of Soil Sciences: Properties and Processes
(
CRC Press
,
Florida
,
2012
).
7.
P.
Peljo
,
L.
Qiao
,
L.
Murtomäki
,
C.
Johans
,
H. H.
Girault
, and
K.
Kontturi
,
ChemPhysChem
14
,
311
(
2013
).
8.
M.
Szwarc
,
Acc. Chem. Res.
2
,
87
(
1969
).
9.
M. F.
Jeng
,
A.
Holmgren
, and
H. J.
Dyson
,
Biochemistry
34
,
10101
(
1995
).
10.
N.
Uras-Aytemiz
,
J. P.
Devlin
,
J.
Sadlej
, and
V.
Buch
,
Chem. Phys. Lett.
422
,
179
(
2006
).
11.
E.
Fan
,
S. A.
Van Arman
,
S.
Kincaid
, and
A. D.
Hamilton
,
J. Am. Chem. Soc.
115
,
369
(
1993
).
12.
D.
McMorrow
and
T. J.
Aartsma
,
Chem. Phys. Lett.
125
,
581
(
1986
).
13.
J. R.
Lakowicz
,
Principles of Fluorescence Spectroscopy
, 3rd ed. (
Springer Science
,
New York
,
2006
).
14.
T. K.
Mukherjee
,
D.
Panda
, and
A.
Datta
,
J. Phys. Chem. B
109
,
18895
(
2005
).
15.
M.
Sarkar
,
J. G.
Ray
, and
P. K.
Sengupta
,
Spectrochim. Acta, Part A
52
,
275
(
1996
).
16.
M.
Sarkar
,
J. G.
Ray
, and
P. K.
Sengupta
,
J. Photochem. Photobiol., A
95
,
157
(
1996
).
17.
C. Y.
Ng
,
D. J.
Trevor
,
P. W.
Tiedemann
,
S. T.
Ceyer
,
P. L.
Kronebusch
,
B. H.
Mahan
, and
Y. T.
Lee
,
J. Chem. Phys.
67
,
4235
(
1977
).
18.
H.
Shinohara
,
N.
Nishi
, and
N.
Washida
,
Chem. Phys. Lett.
106
,
302
(
1984
).
19.
S.
Martrenchard
,
G.
Grégoire
,
C.
Dedonder-Lardeux
,
C.
Jouvet
, and
D.
Solgadi
,
Phys. Chem. Comm.
2
,
15
(
1999
).
20.
L.
Belau
,
K. R.
Wilson
,
S. R.
Leone
, and
M.
Ahmed
,
J. Phys. Chem. A
111
,
10075
(
2007
).
21.
S. A.
Buzza
,
S.
Wei
,
J.
Purnell
, and
A. W.
Castleman
 Jr.
,
J. Chem. Phys.
102
,
4832
(
1995
).
22.
M.
Miyazaki
,
A.
Fujii
,
T.
Ebata
, and
N.
Mikami
,
Science
304
,
1134
(
2004
).
23.
J.-W.
Shin
,
N. I.
Hammer
,
E. G.
Diken
,
M. A.
Johnson
,
R. S.
Walters
,
T. D.
Jaeger
,
M. A.
Duncan
,
R. A.
Christie
, and
K. D.
Jordan
,
Science
304
,
1137
(
2004
).
24.
Y.
Inokuchi
and
N.
Nishi
,
J. Phys. Chem. A
107
,
11319
(
2003
).
25.
T.
Momin
,
S. K.
Ghosh
, and
A.
Bhowmick
,
Int. J. Mass Spectrom.
286
,
17
(
2009
).
26.
Y.
Matsuda
,
N.
Mikami
, and
A.
Fujii
,
Phys. Chem. Chem. Phys.
11
,
1279
(
2009
).
27.
M.
Hachiya
,
Y.
Matsuda
,
K.
Suhara
,
N.
Mikami
, and
A.
Fujii
,
J. Chem. Phys.
129
,
094306
(
2008
).
28.
E.
Nir
,
C.
Plutzer
,
K.
Kleinermanns
, and
M. S.
de Vries
,
Eur. Phys. J. D
20
,
317
(
2002
).
29.
C.
Plutzer
,
I.
Hunig
, and
K.
Kleinermanns
,
Phys. Chem. Chem. Phys.
5
,
1158
(
2003
).
30.
E.
Nir
,
K.
Kleinermanns
, and
M. S.
de Vries
,
Nature (London)
408
,
949
(
2000
).
31.
C.
Plutzer
,
I.
Huing
,
K.
Kleinermanns
,
E.
Nir
, and
M. S.
de Vries
,
Chem. Phys. Chem.
4
,
838
(
2003
).
32.
E.
Nir
,
C.
Janzen
,
P.
Imhof
,
K.
Kleinermanns
, and
M. S.
de Vries
,
Phys. Chem. Chem. Phys.
4
,
732
(
2002
).
33.
A. J.
Stace
and
A. K.
Shukla
,
J. Phys. Chem.
86
,
865
(
1982
).
34.
W. B.
Tzeng
,
S.
Wei
, and
A. W.
Castleman
 Jr.
,
J. Am. Chem. Soc.
111
,
6035
(
1989
).
35.
Z.
Karpas
,
Int. J. Mass Spectrom. Ion Processes
107
,
435
(
1991
).
36.
J. K.
Macleod
,
J. B.
Thomson
, and
C.
Djerassi
,
Tetrahedron
23
,
2095
(
1967
).
37.
K.
Norrman
,
T. I.
Sølling
, and
T. B.
McMahon
,
J. Mass Spectrom.
40
,
1076
(
2005
).
38.
C. S.
Cucinotta
,
A.
Ruini
,
A.
Catellani
, and
A.
Stirling
,
Chem. Phys. Chem.
7
,
1229
(
2006
).
39.
G. E.
Douberly
,
A. M.
Ricks
,
B. W.
Ticknor
, and
M. A.
Duncan
,
Phys. Chem. Chem. Phys.
10
,
77
(
2008
).
40.
Y.
Matsuda
,
K.
Hoki
,
S.
Maeda
,
K.
Hanaue
,
K.
Ohta
,
K.
Morokuma
,
N.
Mikami
, and
A.
Fujii
,
Phys. Chem. Chem. Phys.
14
,
712
(
2012
).
41.
X.
An
,
G. A.
Eiceman
,
R.-M.
Räsänen
,
J. E.
Rodriguez
, and
J. A.
Stone
,
J. Phys. Chem. A
117
,
6389
(
2013
).
42.
C.
Mair
,
T.
Fiegele
,
F.
Biasioli
,
Z.
Hermen
, and
T. D.
Mark
,
J. Chem. Phys.
111
,
2770
(
1999
).
43.
E. P.
Grimsrud
and
P.
Kebarle
,
J. Am. Chem. Soc.
95
,
7939
(
1973
).
44.
S.
Wei
,
W. B.
Tzeng
, and
A. W.
Castleman
 Jr.
,
J. Phys. Chem.
95
,
585
(
1991
).
45.
W. B.
Tzeng
,
K.
Narayanan
,
G. C.
Chang
,
W. C.
Tsai
, and
J. J.
Ho
,
J. Phys. Chem.
100
,
15340
(
1996
).
46.
M. A.
Trikoupis
,
J. K.
Terlouw
, and
P. C.
Burgers
,
J. Am. Chem. Soc.
120
,
12131
(
1998
).
47.
P.
Mourgues
,
J.
Chamot-Rooke
,
G.
Van der Rest
,
H.
Nedev
,
H. E.
Audier
, and
T. B.
McMahon
,
Int. J. Mass Spectrom.
210–211
,
429
(
2001
).
48.
A.
Golan
,
K. B.
Bravaya
,
R.
Kudirka
,
S. R.
Leone
,
A. I.
Krylov
, and
M.
Ahmed
,
Nat. Chem.
4
,
323
(
2012
).
49.
M.
Baba
,
H.
Sinohara
,
N.
Nishi
, and
N.
Hirota
,
Chem. Phys.
83
,
221
(
1984
).
50.
C.
Kosmidis
,
G.
Boulakis
,
A.
Bolovinos
,
P.
Tsekeris
, and
P.
Brint
,
J. Mol. Struct.
266
,
133
(
1992
).
51.
C.
Kosmidis
,
J. G.
Philis
, and
P.
Tzallas
,
Phys. Chem. Chem. Phys.
1
,
2945
(
1999
).
52.
T. I.
Solling
,
E. W. G.
Diau
,
C.
Kotting
,
S.
de Feyter
, and
A. H.
Zewail
,
ChemPhysChem.
3
,
79
(
2002
).
53.
Q.
Wang
,
D.
Wu
,
M.
Jin
,
F.
Liu
,
F.
Hu
,
X.
Cheng
,
H.
Liu
,
Z.
Hu
,
D.
Ding
,
H.
Mineo
,
Y. A.
Dyakov
,
A. M.
Mebel
,
S. D.
Chao
, and
S. H.
Lin
,
J. Chem. Phys.
129
,
204302
(
2008
).
54.
A. K.
Ghosh
,
S.
Datta
,
A.
Mukhopadhyay
, and
T.
Chakraborty
,
J. Phys. Chem. A
117
,
8710
(
2013
).
55.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT,
2010
.
56.
J.
Zhang
,
W.-Y.
Chiang
, and
J.
Laane
,
J. Chem. Phys.
98
,
6129
(
1993
).
57.
M.
Baba
and
I.
Hanazaki
,
J. Chem. Phys.
81
,
5426
(
1984
).
58.
H. E.
Howard-Lock
and
G. W.
King
,
J. Mol. Spectrosc.
36
,
53
(
1970
).
59.
P. D.
Vaz
and
P. J. A.
Ribeiro-Claro
,
J. Phys. Chem. A
107
,
6301
(
2003
).
60.
P. D.
Vaz
,
M. N.
Nolasco
, and
P. J. A.
Ribeiro-Claro
,
Chem. Phys.
427
,
117
(
2013
).
You do not currently have access to this content.