The nonadiabatic dynamics of model proton-coupled electron transfer (PCET) reactions is investigated for the first time using a surface-hopping algorithm based on the solution of the mixed quantum-classical Liouville equation (QCLE). This method provides a rigorous treatment of quantum coherence/decoherence effects in the dynamics of mixed quantum-classical systems, which is lacking in the molecular dynamics with quantum transitions surface-hopping approach commonly used for simulating PCET reactions. Within this approach, the protonic and electronic coordinates are treated quantum mechanically and the solvent coordinate evolves classically on both single adiabatic surfaces and on coherently coupled pairs of adiabatic surfaces. Both concerted and sequential PCET reactions are studied in detail under various subsystem-bath coupling conditions and insights into the dynamical principles underlying PCET reactions are gained. Notably, an examination of the trajectories reveals that the system spends the majority of its time on the average of two coherently coupled adiabatic surfaces, during which a phase enters into the calculation of an observable. In general, the results of this paper demonstrate the applicability of QCLE-based surface-hopping dynamics to the study of PCET and emphasize the importance of mean surface evolution and decoherence effects in the calculation of PCET rate constants.

1.
T.
Meyer
,
M.
Huynh
, and
H.
Holden Thorp
,
Angew. Chem., Int. Ed.
46
,
5284
(
2007
).
2.
M.
Huynh
and
T.
Meyer
,
Chem. Rev.
107
,
5004
(
2007
).
3.
S.
Hammes-Schiffer
and
A.
Stuchebrukhov
,
Chem. Rev.
110
,
6939
(
2010
).
4.
D.
Weinberg
,
C.
Gagliardi
,
J.
Hull
,
C.
Fecenko Murphy
,
C.
Kent
,
B.
Westlake
,
A.
Paul
,
D.
Ess
,
D.
Granville McCafferty
, and
T.
Meyer
,
Chem. Rev.
112
,
4016
(
2012
).
5.
V. R. I.
Kaila
,
M. I.
Verkhovsky
, and
M.
Wikstrom
,
Chem. Rev.
110
,
7062
(
2010
).
6.
B. A.
Diner
and
F.
Rappaport
,
Annu. Rev. Plant Biol.
53
,
551
(
2002
).
7.
G. T.
Babcock
and
M.
Wikstrom
,
Nature (London)
356
,
301
(
1992
).
8.
R.
Cukier
and
D.
Nocera
,
Annu. Rev. Phys. Chem.
49
,
337
(
1998
).
9.
A.
Soudackov
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
113
,
2385
(
2000
).
10.
I.
Rostov
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
115
,
285
(
2001
).
11.
M.
Kobrak
and
S.
Hammes-Schiffer
,
J. Phys. Chem. B
105
,
10435
(
2001
).
12.
S.
Hammes-Schiffer
and
A.
Soudackov
,
J. Chem. Phys.
112
,
14108
(
2008
).
13.
P. E.
Siegbahn
and
M.
Blomberg
,
Chem. Rev.
110
,
7040
(
2010
).
14.
H.
Petek
and
J.
Zhao
,
Chem. Rev.
110
,
7082
(
2010
).
15.
J.
Warren
,
T.
Tronic
, and
J.
Mayer
,
Chem. Rev.
110
,
6961
(
2010
).
16.
C.
Costentin
,
Chem. Rev.
108
,
2145
(
2008
).
17.
N.
Song
,
C. J.
Gagliardi
,
R. A.
Binstead
,
M.-T.
Zhang
,
H.
Thorp
, and
T. J.
Meyer
,
J. Am. Chem. Soc.
134
,
18538
(
2012
).
18.
M. M.
Roubelakis
,
D. K.
Bediako
,
D. K.
Dogutan
, and
D. G.
Nocera
,
Energy Environ. Sci.
5
,
7737
(
2012
).
19.
J. N.
Schrauben
,
R.
Hayoun
,
C. N.
Valdez
,
M.
Braten
,
L.
Fridley
, and
J. M.
Mayer
,
Science
336
,
1298
(
2012
).
20.
A. A.
Pizano
,
J. L.
Yang
, and
D. G.
Nocera
,
Chem. Sci.
3
,
2457
(
2012
).
21.
A.
Soudackov
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
111
,
4672
(
1999
).
22.
Y.
Georgievskii
and
A. A.
Stuchebrukhov
,
J. Chem. Phys.
113
,
10438
(
2000
).
23.
S.
Hammes-Schiffer
,
J. Phys. Chem. Lett.
2
,
1410
(
2011
).
24.
J.
Tully
and
R.
Preston
,
J. Chem. Phys.
93
,
1061
(
1990
).
25.
J.-Y.
Fang
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
106
,
8442
(
1997
).
26.
J.-Y.
Fang
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
107
,
8933
(
1997
).
27.
B. R.
Landry
and
J. E.
Subotnik
,
J. Chem. Phys.
135
,
191101
(
2011
).
28.
A.
Kelly
and
T.
Markland
,
J. Chem. Phys.
139
,
014104
(
2013
).
29.
M. J.
Bedard-Hearn
,
R. E.
Larsen
, and
B. J.
Schwartz
,
J. Chem. Phys.
123
,
234106
(
2005
).
30.
B. R.
Landry
and
J. E.
Subotnik
,
J. Chem. Phys.
137
,
22A513
(
2012
).
31.
C. C.
Martens
and
J.
Fang
,
J. Chem. Phys.
106
,
4918
(
1997
).
32.
A.
Donoso
and
C. C.
Martens
,
J. Chem. Phys.
102
,
4291
(
1998
).
33.
A.
Donoso
and
C. C.
Martens
,
J. Chem. Phys.
112
,
3980
(
2000
).
34.
A.
Donoso
,
D.
Kohen
, and
C. C.
Martens
,
J. Chem. Phys.
112
,
7345
(
2000
).
35.
M.
Santer
,
U.
Manthe
, and
G.
Stock
,
J. Chem. Phys.
114
,
2001
(
2001
).
36.
R.
Kapral
and
G.
Ciccotti
,
J. Chem. Phys.
110
,
8919
(
1999
).
37.
S.
Nielsen
,
R.
Kapral
, and
G.
Ciccotti
,
J. Stat. Phys.
101
,
225
(
2000
).
38.
C.
Wan
and
J.
Schofield
,
J. Chem. Phys.
113
,
7047
(
2000
).
39.
C.
Wan
and
J.
Schofield
,
J. Chem. Phys.
112
,
4447
(
2000
).
40.
D.
MacKernan
,
R.
Kapral
, and
G.
Ciccotti
,
J. Phys.: Condens. Matter
14
,
9069
(
2002
).
41.
G.
Hanna
and
R.
Kapral
,
J. Chem. Phys.
122
,
244505
(
2005
).
42.
D.
MacKernan
,
G.
Ciccotti
, and
R.
Kapral
,
J. Phys. Chem. B
112
,
424
(
2008
).
43.
H.
Azzouz
and
D.
Borgis
,
J. Chem. Phys.
98
,
7361
(
1993
).
44.
G.
Hanna
and
R.
Kapral
,
J. Chem. Phys.
128
,
164520
(
2008
).
45.
S.
Hammes-Schiffer
and
J.
Tully
,
J. Chem. Phys.
101
,
4657
(
1994
).
46.
J.-Y.
Fang
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
107
,
5727
(
1997
).
47.
S.
Shin
and
H.
Metiu
,
J. Chem. Phys.
102
,
9285
(
1995
).
50.
For subsystem-bath coupling potentials that are linear in the bath coordinate, MQCL dynamics is exact. The only approximation made in the sequential short-time propagation solution of the MQCL equation is the momentum jump approximation, which has been shown numerous times to be a very good approximation.
51.
The authors of Ref. 25 arrived at this conclusion on the basis of simulations involving 100 trajectories per initial momentum.
52.
See supplementary material at http://dx.doi.org/10.1063/1.4890915 for figures.

Supplementary Material

You do not currently have access to this content.