Calculating free energies is an important and notoriously difficult task for molecular simulations. The rapid increase in computational power has made it possible to probe increasingly complex systems, yet extracting accurate free energies from these simulations remains a major challenge. Fully exploring the free energy landscape of, say, a biological macromolecule typically requires sampling large conformational changes and slow transitions. Often, the only feasible way to study such a system is to simulate it using an enhanced sampling method. The accelerated weight histogram (AWH) method is a new, efficient extended ensemble sampling technique which adaptively biases the simulation to promote exploration of the free energy landscape. The AWH method uses a probability weight histogram which allows for efficient free energy updates and results in an easy discretization procedure. A major advantage of the method is its general formulation, making it a powerful platform for developing further extensions and analyzing its relation to already existing methods. Here, we demonstrate its efficiency and general applicability by calculating the potential of mean force along a reaction coordinate for both a single dimension and multiple dimensions. We make use of a non-uniform, free energy dependent target distribution in reaction coordinate space so that computational efforts are not wasted on physically irrelevant regions. We present numerical results for molecular dynamics simulations of lithium acetate in solution and chignolin, a 10-residue long peptide that folds into a β-hairpin. We further present practical guidelines for setting up and running an AWH simulation.

1.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
2.
Y.
Iba
,
Int. J. Mod. Phys. C
12
,
623
(
2001
).
3.
A.
Mitsutake
,
Y.
Sugita
, and
Y.
Okamoto
,
Biopolymers
60
,
96
(
2001
).
4.
B. A.
Berg
and
T.
Neuhaus
,
Phys. Rev. Lett.
68
,
9
(
1992
).
5.
6.
B.
Chen
,
J. I.
Siepmann
,
K. J.
Oh
, and
M. L.
Klein
,
J. Chem. Phys.
115
,
10903
(
2001
).
7.
U. H.
Hansmann
and
Y.
Okamoto
,
Phys. Rev. E
56
,
2228
(
1997
).
8.
E.
Marinari
and
G.
Parisi
,
Europhys. Lett.
19
,
451
(
1992
).
9.
A. P.
Lyubartsev
,
A. A.
Martsinovski
,
S. V.
Shevkunov
, and
P. N.
Vorontsov Velyaminov
,
J. Chem. Phys.
96
,
1776
(
1992
).
10.
S.
Kumar
,
P. W.
Payne
, and
M.
Vásquez
,
J. Comput. Chem.
17
,
1269
(
1996
).
11.
F.
Wang
and
D. P.
Landau
,
Phys. Rev. Lett.
86
,
2050
(
2001
).
12.
R. E.
Belardinelli
and
V. D.
Pereyra
,
Phys. Rev. E
75
,
046701
(
2007
).
14.
T.
Huber
,
A. E.
Torda
, and
W. F.
Gunsteren
,
J. Comp. Aid. Mol. Design
8
,
695
(
1994
).
15.
H.
Grubmüller
,
Phys. Rev. E
52
,
2893
(
1995
).
16.
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
12562
(
2002
).
17.
A.
Barducci
,
G.
Bussi
, and
M.
Parrinello
,
Phys. Rev. Lett.
100
,
020603
(
2008
).
18.
E.
Darve
and
A.
Pohorille
,
J. Chem. Phys.
115
,
9169
(
2001
).
19.
B. M.
Dickson
,
F.
Legoll
,
T.
Lelièvre
,
G.
Stoltz
, and
P.
Fleurat-Lessard
,
J. Phys. Chem. B
114
,
5823
(
2010
).
20.
J.
Kim
,
J.
Straub
, and
T.
Keyes
,
Phys. Rev. Lett.
97
,
050601
(
2006
).
21.
C.
Junghans
,
D.
Perez
, and
T.
Vogel
,
J. Chem. Theory Comput.
10
,
1843
(
2014
).
22.
J. D.
Chodera
and
M. R.
Shirts
,
J. Chem. Phys.
135
,
194110
(
2011
).
23.
B. A.
Berg
, “
Introduction to Markov chain Monte Carlo simulations and their statistical analysis
,” in
Markov Chain Monte Carlo
, edited by
W. S.
Kendall
 et al.,
Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore
, Vol.
7
(
World Scientific
,
2005
), pp.
1ff
.
24.
W. H.
Richardson
,
J. Opt. Soc. Am.
62
,
55
(
1972
).
25.
L. B.
Lucy
,
Astronom. J.
79
,
745
(
1974
).
26.
S.
Singh
,
C.-C.
Chiu
, and
J. J.
de Pablo
,
J. Stat. Phys.
145
,
932
(
2011
).
27.
P.
Tian
,
S. Æ.
Jónsson
,
J.
Ferkinghoff-Borg
,
S. V.
Krivov
,
K.
Lindorff-Larsen
,
A.
Irbäck
, and
W.
Boomsma
,
J. Chem. Theory Comput.
10
,
543
(
2014
).
28.
R. E.
Belardinelli
and
V. D.
Pereyra
,
J. Chem. Phys.
127
,
184105
(
2007
).
29.
C.
Zhou
and
J.
Su
,
Phys. Rev. E
78
,
046705
(
2008
).
30.
R. E.
Belardinelli
,
V. D.
Pereyra
,
R.
Dickman
, and
B. J.
Lourenco
, “
Intrinsic convergence properties of entropic sampling algorithms
,” preprint arXiv:1404.0725 (
2014
).
31.
P.
Poulain
,
F.
Calvo
,
R.
Antoine
,
M.
Broyer
, and
P.
Dugourd
,
Phys. Rev. E
73
,
056704
(
2006
).
32.
A. D.
Swetnam
and
M. P.
Allen
,
J. Comput. Chem.
32
,
816
(
2010
).
33.
G.
Bussi
,
A.
Laio
, and
M.
Parrinello
,
Phys. Rev. Lett.
96
,
090601
(
2006
).
34.
S.
Honda
,
K.
Yamasaki
,
Y.
Sawada
, and
H.
Morii
,
Structure
12
,
1507
(
2004
).
35.
S.
Pronk
,
S.
Pall
,
R.
Schulz
,
P.
Larsson
,
P.
Bjelkmar
,
R.
Apostolov
,
M. R.
Shirts
,
J. C.
Smith
,
P. M.
Kasson
,
D.
van der Spoel
,
B.
Hess
, and
E.
Lindahl
,
Bioinformatics
29
,
845
(
2013
).
36.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
37.
H. J.
Berendsen
,
J. P. M.
Postma
,
W. F.
Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
38.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
39.
B.
Hess
,
J. Chem. Theory Comput.
4
,
116
(
2008
).
40.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
41.
B.
Hess
and
N. F. A.
van der Vegt
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
13296
(
2009
).
42.
V.
Hornak
,
R.
Abel
,
A.
Okur
,
B.
Strockbine
,
A.
Roitberg
, and
C.
Simmerling
,
Proteins: Struct. Funct. Bioinf.
65
,
712
(
2006
).
43.
H.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
44.
D.
Satoh
,
K.
Shimizu
,
S.
Nakamura
, and
T.
Terada
,
FEBS Lett.
580
,
3422
(
2006
).
45.
P.
Kührová
,
A.
De Simone
,
M.
Otyepka
, and
R. B.
Best
,
Biophys. J.
102
,
1897
(
2012
).
46.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
,
141
(
1999
).
47.
H.
Fukunishi
,
O.
Watanabe
, and
S.
Takada
,
J. Chem. Phys.
116
,
9058
(
2002
).
You do not currently have access to this content.