A recently published coarse-grained DNA model [D. M. Hinckley, G. S. Freeman, J. K. Whitmer, and J. J. de Pablo, J. Chem. Phys.139, 144903 (2013)] is used to study the hybridization mechanism of DNA oligomers. Forward flux sampling is used to construct ensembles of reactive trajectories from which the effects of sequence, length, and ionic strength are revealed. Heterogeneous sequences are observed to hybridize via the canonical zippering mechanism. In contrast, homogeneous sequences hybridize through a slithering mechanism, while more complex base pair displacement processes are observed for repetitive sequences. In all cases, the formation of non-native base pairs leads to an increase in the observed hybridization rate constants beyond those observed in sequences where only native base pairs are permitted. The scaling of rate constants with length is captured by extending existing hybridization theories to account for the formation of non-native base pairs. Furthermore, that scaling is found to be similar for oligomeric and polymeric systems, suggesting that similar physics is involved.

1.
N. C.
Seeman
,
Mol. Biotechnol.
37
,
246
(
2007
).
2.
S. J.
Tan
,
M. J.
Campolongo
,
D.
Luo
, and
W.
Cheng
,
Nat. Nanotechnol.
6
,
268
(
2011
).
3.
R. J.
Macfarlane
,
B.
Lee
,
M. R.
Jones
,
N.
Harris
,
G. C.
Schatz
, and
C. A.
Mirkin
,
Science
334
,
204
(
2011
).
4.
R. J.
Macfarlane
,
M. R.
Jones
,
B.
Lee
,
E.
Auyeung
, and
C. A.
Mirkin
,
Science
341
,
1222
(
2013
).
5.
S. Y.
Park
,
A. K. R.
Lytton-Jean
,
B.
Lee
,
S.
Weigand
,
G. C.
Schatz
, and
C. A.
Mirkin
,
Nature (London)
451
,
553
(
2008
).
6.
P.
Rothemund
,
Nature (London)
440
,
297
(
2006
).
7.
H.
Gu
,
J.
Chao
,
S.
Xiao
, and
N.
Seeman
,
Nature (London)
465
,
202
(
2010
).
8.
J.
Marmur
and
P.
Doty
,
J. Mol. Biol.
3
,
585
(
1961
).
9.
J. G.
Wetmur
and
N.
Davidson
,
J. Mol. Biol.
31
,
349
(
1968
).
10.
M. E.
Craig
,
D. M.
Crothers
, and
P.
Doty
,
J. Mol. Biol.
62
,
383
(
1971
).
11.
D. C.
Rau
and
L. C.
Klotz
,
J. Chem. Phys.
62
,
2354
(
1975
).
12.
L. E.
Morrison
and
L. M.
Stols
,
Biochemistry
32
,
3095
(
1993
).
13.
C.
Chen
,
W.
Wang
,
Z.
Wang
,
F.
Wei
, and
X. S.
Zhao
,
Nucl. Acids Res.
35
,
2875
(
2007
).
14.
J.-L.
Sikorav
,
H.
Orland
, and
A.
Braslau
,
J. Phys. Chem. B
113
,
3715
(
2009
).
15.
D.
Pörschke
,
Biophys. Chem.
2
,
83
(
1974
).
16.
D.
Pörschke
and
M.
Eigen
,
J. Mol. Biol.
62
,
361
(
1971
).
17.
D.
Pörschke
,
O. C.
Uhlenbeck
, and
F. H.
Martin
,
Biopolymers
12
,
1313
(
1973
).
18.
M. F.
Hagan
,
A. R.
Dinner
,
D.
Chandler
, and
A. K.
Chakraborty
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
13922
(
2003
).
19.
S.
Piana
,
J. Phys. Chem. A
111
,
12349
(
2007
).
20.
D.
Bashford
and
D. A.
Case
,
Annu. Rev. Phys. Chem.
51
,
129
(
2000
).
21.
T. A.
Knotts
 IV
,
N.
Rathore
,
D. C.
Schwartz
, and
J. J.
de Pablo
,
J. Chem. Phys.
126
,
084901
(
2007
).
22.
E. J.
Sambriski
,
D. C.
Schwartz
, and
J. J.
de Pablo
,
Biophys. J.
96
,
1675
(
2009
).
23.
A.
Morriss-Andrews
,
J.
Rottler
, and
S. S.
Plotkin
,
J. Chem. Phys.
132
,
035105
(
2010
).
24.
P. D.
Dans
,
A.
Zeida
,
M. R.
Machado
, and
S.
Pantano
,
J. Chem. Theory Comput.
6
,
1711
(
2010
).
25.
T. E.
Ouldridge
,
A. A.
Louis
, and
J. P. K.
Doye
,
J. Chem. Phys.
134
,
085101
(
2011
).
26.
M. C.
Linak
,
R.
Tourdot
, and
K. D.
Dorfman
,
J. Phys. Chem.
135
,
205102
(
2011
).
27.
A. V.
Savin
,
M. A.
Mazo
,
I. P.
Kikot
,
L. I.
Manevitch
, and
A. V.
Onufriev
,
Phys. Rev. B
83
,
245406
(
2011
).
28.
C. W.
Hsu
,
M.
Fyta
,
G.
Lakatos
,
S.
Melchionna
, and
E.
Kaxiras
,
J. Chem. Phys.
137
,
105102
(
2012
).
29.
L. E.
Edens
,
J. A.
Brozik
, and
D. J.
Keller
,
J. Phys. Chem. B
116
,
14735
(
2012
).
30.
O.
Gonzalez
,
D.
Petkevičiūtė
, and
J. H.
Maddocks
,
J. Chem. Phys.
138
,
055102
(
2013
).
31.
Y.
He
,
M.
Maciejczyk
,
S.
Ołdziej
,
H. A.
Scheraga
, and
A.
Liwo
,
Phys. Rev. Lett.
110
,
098101
(
2013
).
32.
D. M.
Hinckley
,
G. S.
Freeman
,
J. K.
Whitmer
, and
J. J.
de Pablo
,
J. Chem. Phys.
139
,
144903
(
2013
).
33.
S.
Plimpton
,
J. Comp. Phys.
117
,
1
19
(
1995
).
34.
See https://uchic.ag/3spn2 for the USER-3SPN2 package needed to run 3SPN.2 simulations in LAMMPS.
35.
F.
Oosawa
and
M.
Kasai
,
J. Mol. Biol.
4
,
10
(
1962
).
36.
G. S.
Manning
,
J. Chem. Phys.
51
,
924
(
1969
).
37.
G.
Bussi
and
M.
Parrinello
,
Phys. Rev. E
75
,
056707
(
2007
).
38.
A. E.
Nkodo
,
J. M.
Garnier
,
B.
Tinland
,
H.
Ren
,
C.
Desruisseaux
,
L. C.
McCormick
,
G.
Drouin
, and
G. W.
Slater
,
Electrophoresis
22
,
2424
(
2001
).
39.
We chose to normalize the rate constants near physiological conditions (I = 200 mM) because the model is more likely to be used under such conditions.
40.
T. J.
Schmitt
and
T. A.
Knotts
 IV
,
J. Chem. Phys.
134
,
205105
(
2011
).
41.
T. J.
Schmitt
,
J. B.
Rogers
, and
T. A.
Knotts
 IV
,
J. Chem. Phys.
138
,
035102
(
2013
).
42.
E. J.
Sambriski
,
D. C.
Schwartz
, and
J. J.
de Pablo
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
18125
(
2009
).
43.
E. J.
Sambriski
,
V.
Ortiz
, and
J. J.
de Pablo
,
J. Phys.: Condens. Matter
21
,
034105
(
2009
).
44.
M. J.
Hoefert
,
E. J.
Sambriski
, and
J. J.
de Pablo
,
Soft Matter
7
,
560
(
2011
).
45.
T. E.
Ouldridge
,
P.
Šulc
,
F.
Romano
,
J. P. K.
Doye
, and
A. A.
Louis
,
Nucl. Acids Res.
41
,
8886
(
2013
).
46.
R. J.
Allen
,
C.
Valeriani
, and
P. R.
ten Wolde
,
J. Phys.: Condens. Matter
21
,
463102
(
2009
).
47.
F. A.
Escobedo
,
E. E.
Borrero
, and
J. C.
Araque
,
J. Phys.: Condens. Matter
21
,
333101
(
2009
).
48.
S. H.
Northrup
,
S. A.
Allison
, and
J. A.
McCammon
,
J. Chem. Phys.
80
,
1517
(
1984
).
49.
R. J.
Britten
,
D. E.
Graham
, and
B. R.
Neufeld
,
Methods Enzymol.
29
,
363
(
1974
).
50.
S.
Redner
,
A Guide to First-passage Processes
(
Cambridge University Press
,
2001
).
51.
See supplementary material at http://dx.doi.org/10.1063/1.4886336 for additional details regarding hybridization theory, predicted mechanisms, and scaling of rate constants.
52.
J. N.
Onuchic
and
P. G.
Wolynes
,
Curr. Opin. Struct. Biol.
14
,
70
(
2004
).
53.
J. H.
van de Sande
,
N. B.
Ramsing
,
M. W.
Germann
,
W.
Elhorst
,
B. W.
Kalisch
,
E.
von Kitzing
,
R. T.
Pon
,
R. C.
Clegg
, and
T. M.
Jovin
,
Science
241
,
551
(
1988
).
54.
J. G.
Wetmur
,
Annu. Rev. Biophys. Biol.
5
,
337
(
1976
).
55.
J.
Des Cloizeaux
,
J. Phys.
41
,
223
(
1980
).
56.
A. R.
Khokhlov
,
Macromol. Rapid. Commun.
2
,
633
(
1981
).
57.
A. G.
Hinnebusch
,
V. E.
Clark
, and
L. C.
Klotz
,
Biochemistry
17
,
1521
(
1978
).
58.
R.
Owczarzy
,
A. V.
Tataurov
,
Y.
Wu
,
J. A.
Manthey
,
K. A.
McQuisten
,
H. G.
Almabrazi
,
K. F.
Pedersen
,
Y.
Lin
,
J.
Garretson
,
N. O.
McEntaggard
,
C. A.
Sailor
,
R. B.
Dawson
, and
A. S.
Peek
,
Nucl. Acids Res.
36
,
W163
(
2008
).
59.
F. W.
Studier
,
J. Mol. Biol.
41
,
199
(
1969
).
60.
J.
Doye
,
T.
Ouldridge
,
A. A.
Louis
,
F.
Romano
,
P.
Šulc
,
C.
Matek
,
B.
Snodin
,
L.
Rovigatti
,
J.
Schreck
,
R.
Harrison
, and
W. P. J.
Smith
,
Phys. Chem. Chem. Phys.
15
,
20395
(
2013
).
61.
G. S.
Freeman
,
D. M.
Hinckley
,
J. P.
Lequieu
,
J. K.
Whitmer
, and
J. J.
de Pablo
, “
DNA shape dominates sequence affinity in nucleosome formation
,”
Phys. Rev. Lett.
(submitted).
62.
T.
Cragnolini
,
P.
Derreumaux
, and
S.
Pasquali
,
J. Phys. Chem. B
117
,
8047
(
2013
).

Supplementary Material

You do not currently have access to this content.