Electron-phonon couplings and charge transport properties of α- and γ-graphyne nanosheets were investigated from first-principles calculations by using the density-functional perturbation theory and the Boltzmann transport equation. Wannier function-based interpolation techniques were applied to obtain the ultra-dense electron-phonon coupling matrix elements. Due to the localization feature in Wannier space, the interpolation based on truncated space is found to be accurate. We demonstrated that the intrinsic electron-phonon scatterings in these two-dimensional carbon materials are dominated by low-energy longitudinal-acoustic phonon scatterings over a wide range of temperatures. In contrast, the high-frequency optical phonons play appreciable roles only at high temperature regimes. The electron mobilities of α- and γ-graphynes are predicted to be ∼104 cm2 V−1 s−1 at room temperature.

1.
.
S.
Das Sarma
,
S.
Adam
,
E. H.
Hwang
, and
E.
Rossi
,
Rev. Mod. Phys.
83
,
407
(
2011
).
3.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature
438
,
197
(
2005
).
4.
Y.
Zhang
,
Y.-W.
Tan
,
H. L.
Stormer
, and
P.
Kim
,
Nature
438
,
201
(
2005
).
5.
A. N.
Enyashin
and
A. L.
Ivanovskii
,
Phys. Status Solidi B
248
,
1879
(
2011
).
6.
Y.
Liu
,
G.
Wang
,
Q.
Huang
,
L.
Guo
, and
X.
Chen
,
Phys. Rev. Lett.
108
,
225505
(
2012
).
7.
C.
Su
,
H.
Jiang
, and
J.
Feng
,
Phys. Rev. B
87
,
075453
(
2013
).
8.
D.
Malko
,
C.
Neiss
,
F.
Viñes
, and
A.
Görling
,
Phys. Rev. Lett.
108
,
086804
(
2012
).
9.
B. G.
Kim
and
H. J.
Choi
,
Phys. Rev. B
86
,
115435
(
2012
).
10.
R.
Baughman
,
H.
Eckhardt
, and
M.
Kertesz
,
J. Chem. Phys.
87
,
6687
(
1987
).
11.
M.
Long
,
L.
Tang
,
D.
Wang
,
Y.
Li
, and
Z.
Shuai
,
ACS Nano
5
,
2593
(
2011
).
12.
L.
Pan
,
L.
Zhang
,
B.
Song
,
S.
Du
, and
H.-J.
Gao
,
Appl. Phys. Lett.
98
,
173102
(
2011
).
13.
Q.
Zheng
,
G.
Luo
,
Q.
Liu
,
R.
Quhe
,
J.
Zheng
,
K.
Tang
,
Z.
Gao
,
S.
Nagase
, and
J.
Lu
,
Nanoscale
4
,
3990
(
2012
).
14.
G.
Li
,
Y.
Li
,
H.
Liu
,
Y.
Guo
,
Y.
Li
, and
D.
Zhu
,
Chem. Commun.
46
,
3256
(
2010
).
15.
J.
Chen
,
J.
Xi
,
D.
Wang
, and
Z.
Shuai
,
J. Phys. Chem. Lett.
4
,
1443
(
2013
).
16.
J.
Xi
,
M.
Long
,
L.
Tang
,
D.
Wang
, and
Z.
Shuai
,
Nanoscale
4
,
4348
(
2012
).
17.
M.
Long
,
L.
Tang
,
D.
Wang
,
L.
Wang
, and
Z.
Shuai
,
J. Am. Chem. Soc.
131
,
17728
(
2009
).
18.
L.
Tang
,
M.
Long
,
D.
Wang
, and
Z.
Shuai
,
Sci. China Ser. B: Chem.
52
,
1646
(
2009
).
19.
J.
Bardeen
and
W.
Shockley
,
Phys. Rev.
80
,
72
(
1950
).
20.
K. I.
Bolotin
,
K. J.
Sikes
,
J.
Hone
,
H. L.
Stormer
, and
P.
Kim
,
Phys. Rev. Lett.
101
,
096802
(
2008
).
21.
J.-H.
Chen
,
C.
Jang
,
M.
Ishigami
,
S.
Xiao
,
W.
Cullen
,
E.
Williams
, and
M.
Fuhrer
,
Solid State Commun.
149
,
1080
(
2009
).
22.
X.
Hong
,
A.
Posadas
,
K.
Zou
,
C. H.
Ahn
, and
J.
Zhu
,
Phys. Rev. Lett.
102
,
136808
(
2009
).
23.
V.
Perebeinos
and
P.
Avouris
, “
Current saturation and surface polar phonon scattering in graphene
,” preprint arXiv:0910.4665 (
2009
).
24.
K. M.
Borysenko
,
J. T.
Mullen
,
E. A.
Barry
,
S.
Paul
,
Y. G.
Semenov
,
J. M.
Zavada
,
M. B.
Nardelli
, and
K. W.
Kim
,
Phys. Rev. B
81
,
121412
(
2010
).
25.
K.
Kaasbjerg
,
K. S.
Thygesen
, and
K. W.
Jacobsen
,
Phys. Rev. B
85
,
115317
(
2012
).
26.
K. M.
Borysenko
,
J. T.
Mullen
,
X.
Li
,
Y. G.
Semenov
,
J. M.
Zavada
,
M. B.
Nardelli
, and
K. W.
Kim
,
Phys. Rev. B
83
,
161402
(
2011
).
27.
F.
Giustino
,
M. L.
Cohen
, and
S. G.
Louie
,
Phys. Rev. B
76
,
165108
(
2007
).
28.
N.
Vukmirović
,
C.
Bruder
, and
V. M.
Stojanović
,
Phys. Rev. Lett.
109
,
126407
(
2012
).
29.
M.
Casula
,
M.
Calandra
, and
F.
Mauri
,
Phys. Rev. B
86
,
075445
(
2012
).
30.
S.
Baroni
,
S.
de Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
,
Rev. Mod. Phys.
73
,
515
(
2001
).
31.
M.
Wierzbowska
,
S.
de Gironcoli
, and
P.
Giannozzi
, “
Origins of low- and high-pressure discontinuities of Tc in niobium
,” preprint arXiv:cond-mat/0504077 (
2005
).
32.
G.
Grimvall
,
The Electron-Phonon Interaction in Metals, Selected Topics in Solid State Physics
(
North-Holland
,
Amsterdam
,
1981
).
33.
J. W.
Ziman
,
Principles of the Theory of Solids
(
Cambridge University Press
,
London
,
1972
).
34.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
,
Rev. Mod. Phys.
84
,
1419
(
2012
).
35.
I.
Souza
,
N.
Marzari
, and
D.
Vanderbilt
,
Phys. Rev. B
65
,
035109
(
2001
).
36.
G.
Paolo
 et al,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
37.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
38.
J.
Noffsinger
,
F.
Giustino
,
B. D.
Malone
,
C.-H.
Park
,
S. G.
Louie
, and
M. L.
Cohen
,
Comput. Phys. Commun.
181
,
2140
(
2010
).
39.
A. A.
Mostofi
,
J. R.
Yates
,
Y.-S.
Lee
,
I.
Souza
,
D.
Vanderbilt
, and
N.
Marzari
,
Comput. Phys. Commun.
178
,
685
(
2008
).
40.
J. D.
Cloizeaux
,
Phys. Rev.
135
,
A698
(
1964
).
41.
G.
Nenciu
,
Commun. Math. Phys.
91
,
81
(
1983
).
42.
J.-A.
Yan
,
W. Y.
Ruan
, and
M. Y.
Chou
,
Phys. Rev. B
79
,
115443
(
2009
).
43.
S.
Piscanec
,
M.
Lazzeri
,
F.
Mauri
,
A. C.
Ferrari
, and
J.
Robertson
,
Phys. Rev. Lett.
93
,
185503
(
2004
).
44.
Q.
Peng
,
W.
Ji
, and
S.
De
,
Phys. Chem. Chem. Phys.
14
,
13385
(
2012
).
45.
V. O.
Özçelik
and
S.
Ciraci
,
J. Phys. Chem. C
117
,
2175
(
2013
).
46.
J.
Kang
,
J.
Li
,
F.
Wu
,
S.-S.
Li
, and
J.-B.
Xia
,
J. Phys. Chem. C
115
,
20466
(
2011
).
47.
X.-M.
Wang
,
D.-C.
Mo
, and
S.-S.
Lu
,
J. Chem. Phys.
138
,
204704
(
2013
).
48.
49.
J.-A.
Yan
,
R.
Stein
,
D. M.
Schaefer
,
X.-Q.
Wang
, and
M. Y.
Chou
,
Phys. Rev. B
88
,
121403
(
2013
).
50.
D. K.
Ferry
,
Semiconductor Transport
(
Taylor and Francis
,
New York
,
2000
).
51.
K.
Kaasbjerg
,
K. S.
Thygesen
, and
K. W.
Jacobsen
,
Phys. Rev. B
85
,
165440
(
2012
).
52.
E. H.
Hwang
and
S.
Das Sarma
,
Phys. Rev. B
77
,
115449
(
2008
).
53.
R. S.
Shishir
and
D. K.
Ferry
,
J. Phys.: Condens. Matter
21
,
344201
(
2009
).
54.
H. L.
Stormer
,
L. N.
Pfeiffer
,
K. W.
Baldwin
, and
K. W.
West
,
Phys. Rev. B
41
,
1278
(
1990
).
You do not currently have access to this content.