We employ the adaptive resolution approach AdResS, in its recently developed Grand Canonical-like version (GC-AdResS) [H. Wang, C. Hartmann, C. Schütte, and L. Delle Site, Phys. Rev. X3, 011018 (2013)], to calculate the excess chemical potential, μex, of various liquids and mixtures. We compare our results with those obtained from full atomistic simulations using the technique of thermodynamic integration and show a satisfactory agreement. In GC-AdResS, the procedure to calculate μex corresponds to the process of standard initial equilibration of the system; this implies that, independently of the specific aim of the study, μex, for each molecular species, is automatically calculated every time a GC-AdResS simulation is performed.

1.
B.
Widom
,
J. Chem. Phys.
39
,
2808
(
1963
).
2.
I. G.
Tironi
and
W. F.
van Gunsteren
,
Mol. Phys.
83
,
381
(
1994
).
3.
S.
Fritsch
,
S.
Poblete
,
C.
Junghans
,
G.
Ciccotti
,
L. Delle
Site
, and
K.
Kremer
,
Phys. Rev. Lett.
108
,
170602
(
2012
).
4.
H.
Wang
,
C.
Schütte
, and
L. Delle
Site
,
J. Chem. Theory Comput.
8
,
2878
(
2012
).
5.
H.
Wang
,
C.
Hartmann
,
C.
Schütte
, and
L. Delle
Site
,
Phys. Rev. X
3
,
011018
(
2013
).
6.
J.
Zavadlav
,
M. N.
Melo
,
S. J.
Marrink
, and
M.
Praprotnik
,
J. Chem. Phys.
140
,
054114
(
2014
).
7.
J.
Zavadlav
,
M. N.
Melo
,
A. Vicente
Cunha
,
A. H.
De Vries
,
S. J.
Marrink
, and
M.
Praprotnik
,
J. Chem. Theory Comput.
10
,
2591
2598
(
2014
).
8.
R.
Potestio
,
S.
Fritsch
,
P.
Espanol
,
R.
Delgado-Buscalioni
,
K.
Kremer
,
R.
Everaers
, and
D.
Donadio
,
Phys. Rev. Lett.
111
,
060601
(
2013
).
9.
R.
Potestio
,
S.
Fritsch
,
P.
Espanol
,
R.
Delgado-Buscalioni
,
K.
Kremer
,
R.
Everaers
, and
D.
Donadio
,
Phys. Rev. Lett.
110
,
108301
(
2013
).
10.
L. Delle
Site
,
Entropy
16
,
23
40
(
2014
).
11.
C.
Junghans
and
S.
Poblete
,
Comput. Phys. Commun.
181
,
1449
(
2010
).
12.
D.
Mukherji
,
N. F. A.
van der Vegt
, and
K.
Kremer
,
J. Chem. Theory Comput.
8
,
3536
(
2012
).
13.
K.
Yoshida
,
T.
Yamaguchi
,
A.
Kovalenko
, and
F.
Hirata
,
J. Phys. Chem. B
106
,
5042
(
2002
).
14.
H.
Eslami
and
F.
Müller-Plathe
,
J. Comput. Chem.
28
,
1763
(
2007
).
15.
D. P.
Geerke
and
W. F.
van Gunsteren
,
ChemPhysChem
7
,
671
(
2006
).
16.
J. R.
Pliego
 Jr.
and
J. M.
Riveros
,
Phys. Chem. Chem. Phys.
4
,
1622
(
2002
).
17.
L. J.
Smith
,
H. J. C.
Berendsen
, and
W. F.
van Gunsteren
,
J. Phys. Chem. B
108
,
1065
(
2004
).
18.
M. E.
Lee
and
N. F. A.
van der Vegt
,
J. Chem. Phys.
122
,
114509
(
2005
).
19.
D.
Mukherji
,
N. F. A.
van der Vegt
,
K.
Kremer
, and
L. Delle
Site
,
J. Chem. Theory Comput.
8
,
375
(
2012
).
20.
See http://www.gromacs.org/ for more information about the GROMACS code.
21.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
, and
J.
Hermans
, “
Interaction models for water in relation to protein hydration
,” in
Intermolecular Forces
, edited by
B.
Pullman
(
Reidel
,
Dordrecht
,
1981
), p.
331
.
22.
R.
Walser
,
A. E.
Mark
,
W. F.
van Gunsteren
,
M.
Lauterbach
, and
G.
Wipff
,
J. Chem. Phys.
112
,
10450
(
2000
).
23.
D. P.
Geerke
,
C.
Oostenbrink
,
N. F. A.
van der Vegt
, and
W. F.
van Gunsteren
,
J. Phys. Chem. B.
108
,
1436
(
2004
).
24.
T.
Kristof
and
G.
Rutkai
,
Chem. Phys. Lett.
445
,
74
(
2007
).
25.
D. L.
Mobley
,
J. D.
Chodera
, and
K. A.
Dill
,
J. Chem. Phys.
125
,
084902
(
2006
).
26.
C. H.
Bennett
,
J. Comput. Phys.
22
,
245
(
1976
).
27.
I. G.
Tironi
,
R.
Sperb
,
P. E.
Smith
, and
W. F.
van Gunsteren
,
J. Chem. Phys.
102
,
5451
(
1995
).
You do not currently have access to this content.