This work is devoted to analyze the relation between the thermodynamic properties of a confined fluid and the shape of its confining vessel. Recently, new insights in this topic were found through the study of cluster integrals for inhomogeneous fluids that revealed the dependence on the vessel shape of the low density behavior of the system. Here, the statistical mechanics and thermodynamics of fluids confined in wedges or by edges is revisited, focusing on their cluster integrals. In particular, the well known hard sphere fluid, which was not studied in this framework so far, is analyzed under confinement and its thermodynamic properties are analytically studied up to order two in the density. Furthermore, the analysis is extended to the confinement produced by a corrugated wall. These results rely on the obtained analytic expression for the second cluster integral of the confined hard sphere system as a function of the opening dihedral angle 0 < β < 2π. It enables a unified approach to both wedges and edges.

2.
J. R.
Henderson
,
J. Chem. Phys.
120
,
1535
(
2004
).
3.
J. R.
Henderson
,
Phys. Rev. E
69
,
061613
(
2004
).
4.
V.
Boţan
,
F.
Pesth
,
T.
Schilling
, and
M.
Oettel
,
Phys. Rev. E
79
,
061402
(
2009
).
5.
M.
Schneemilch
,
N.
Quirke
, and
J. R.
Henderson
,
J. Chem. Phys.
118
,
816
(
2003
).
6.
P.
Bryk
,
R.
Roth
,
M.
Schoen
, and
S.
Dietrich
,
Europhys. Lett.)
63
,
233
(
2003
).
7.
M.
Schoen
,
Colloids Surf., A
206
,
253
(
2002
).
8.
J. R.
Henderson
,
Phys. Rev. E
73
,
010402
(
2006
).
9.
L.
Almenar
and
M.
Rauscher
,
J. Phys.: Condens. Matter
23
,
184115
(
2011
).
10.
K. F.
Freed
and
C.
Wu
,
J. Chem. Phys.
135
,
144902
(
2011
).
11.
J. F.
Lutsko
,
J. Chem. Phys.
137
,
154903
(
2012
).
12.
A.
Statt
,
A.
Winkler
,
P.
Virnau
, and
K.
Binder
,
J. Phys.: Condens. Matter
24
,
464122
(
2012
).
13.
P. N.
Pusey
and
W.
van Megen
,
Nature
320
,
340
(
1986
).
14.
C. P.
Royall
,
W. C. K.
Poon
, and
E. R.
Weeks
,
Soft Matter
9
,
17
(
2013
).
15.
S.
Mandal
,
S.
Lang
,
M.
Gross
,
M.
Oettel
,
D.
Raabe
,
T.
Franosch
, and
F.
Varnik
,
Nat. Commun.
5
,
4435
(
2014
).
16.
M.
Kedzierski
and
E.
Wajnryb
,
J. Chem. Phys.
135
,
164104
(
2011
).
17.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of simple liquids
, 3rd ed. (
Academic Press
,
Amsterdam
,
2006
).
18.
Z.
Wang
and
L.
Liu
,
Phys. Rev. E
86
,
031115
(
2012
).
19.
I.
Urrutia
,
Phys. Rev. E
89
,
032122
(
2014
).
20.
I.
Urrutia
and
G.
Castelletti
,
J. Chem. Phys.
136
,
224509
(
2012
).
21.
I.
Urrutia
and
C.
Pastorino
,
J. Chem. Phys.
141
,
124905
(
2014
).
22.
I.
Urrutia
,
J. Chem. Phys.
133
,
104503
(
2010
).
23.
T. L.
Hill
,
Statistical Mechanics
(
Dover
,
New York
,
1956
).
26.
I.
Urrutia
, “
Statistical mechanics of fluids confined by polytopes: The hidden geometry of the cluster integrals
,” e-print arXiv:1303.3468 [cond-mat.stat-mech].
27.
J. S.
Rowlinson
,
Molecular Physics
6
,
517
(
1963
).
28.
W.
Press
,
Numerical Recipes: The Art of Scientific Computing
(
Cambridge University Press
,
Cambridge, UK, New York
,
2007
).
29.

I have detected a misprint in Eq. (27) of Ref. 22. There, where it reads 12F10.5,0.5;3;s2 it should be 2F10.5,0.5;3;s2.

30.
M.
Schoen
and
S.
Dietrich
,
Phys. Rev. E
56
,
499
(
1997
).
You do not currently have access to this content.