We study four citrate synthase homodimeric proteins within a structure-based coarse-grained model. Two of these proteins come from thermophilic bacteria, one from a cryophilic bacterium and one from a mesophilic organism; three are in the closed and two in the open conformations. Even though the proteins belong to the same fold, the model distinguishes the properties of these proteins in a way which is consistent with experiments. For instance, the thermophilic proteins are more stable thermodynamically than their mesophilic and cryophilic homologues, which we observe both in the magnitude of thermal fluctuations near the native state and in the kinetics of thermal unfolding. The level of stability correlates with the average coordination number for amino acid contacts and with the degree of structural compactness. The pattern of positional fluctuations along the sequence in the closed conformation is different than in the open conformation, including within the active site. The modes of correlated and anticorrelated movements of pairs of amino acids forming the active site are very different in the open and closed conformations. Taken together, our results show that the precise location of amino acid contacts in the native structure appears to be a critical element in explaining the similarities and differences in the thermodynamic properties, local flexibility, and collective motions of the different forms of the enzyme.

1.
N.
Lane
,
Life Ascending: The Ten Great Inventions of Evolution
(
W.W. Norton and Co.
,
New York
,
2009
).
2.
H. A.
Krebs
and
P. D. J.
Weitzman
,
Krebs’ Citric Acid Cycle: Half a Century and Still Turning
(
Biochemical Society
,
London
,
1987
).
3.
D. L.
Nelson
and
M. M.
Cox
,
Lehninger Principles of Biochemistry
, 4th ed. (
W.H. Freeman and Co.
,
2005
).
4.
Y.
Ueda
,
H.
Taketomi
, and
N.
Go
, “
Studies on protein folding, unfolding and fluctuations by computer simulation: A three-dimensional lattice model of lysozyme
,”
Biopolymers
17
,
1531
1548
(
1978
).
5.
H.
Abe
and
N.
Go
, “
Noninteracting local-structure model of folding and unfolding transition in globular proteins. II. Application to two-dimensional lattice proteins
,”
Biopolymers
20
,
1013
1031
(
1981
).
6.
N.
Go
, “
Theoretical studies of protein folding
,”
Annu. Rev. Biophys. Bioeng.
12
,
183
210
(
1983
).
7.
T. X.
Hoang
and
M.
Cieplak
, “
Molecular dynamics of folding of secondary structures in Go-like models of proteins
,”
J. Chem. Phys.
112
,
6851
6862
(
2000
).
8.
C.
Clementi
,
H.
Nymeyer
, and
J. N.
Onuchic
, “
Topological and energetic factors: What determines the structural details of the transition state ensemble and en-route intermediates for protein folding? An investigation for small globular proteins
,”
J. Mol. Biol.
298
,
937
953
(
2000
).
9.
J.
Karanicolas
and
Ch. L.
Brooks
 III
, “
The origins of the asymmetry in the folding transition states of protein L and protein G
,”
Prot. Sci.
11
,
2351
2361
(
2002
).
10.
Y.
Levy
,
P. G.
Wolynes
, and
J.
Onuchic
, “
Protein topology determines binding mechanism
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
511
516
(
2004
).
11.
J. I.
Sułkowska
and
M.
Cieplak
, “
Selection of optimal variants of Go-like models of proteins through studies of stretching
,”
Biophys. J.
95
,
3174
3191
(
2008
).
12.
J. K.
Noel
and
J. N.
Onuchic
, “
The many faces of structure-based potentials: From protein folding landscapes to structural characterization of complex biomolecules
,” in
Computational Modeling of Biological Systems: From Molecules to Pathways
, edited by
N.
Dokholyan
(
Springer Science+Business Media, LLC
,
2012
).
13.
J. I.
Sułkowska
and
M.
Cieplak
, “
Mechanical stretching of proteins – A theoretical survey of the Protein Data Bank
,”
J. Phys.: Condens. Matter
19
,
283201
(
2007
).
14.
M.
Sikora
,
J. I.
Sułkowska
, and
M.
Cieplak
, “
Mechanical strength of 17134 model proteins and cysteine slipknots
,”
PLoS Comput. Biol.
5
,
e1000547
(
2009
).
15.
B.
Różycki
,
Ł.
Mioduszewski
, and
M.
Cieplak
, “
Unbinding and unfolding of adhesion protein complexes through stretching: Interplay between shear and tensile mechanical clamps
,”
Proteins: Struct. Funct. Bioinf.
82
,
3144
3153
(
2014
).
16.
A.
Galera-Prat
,
A.
Gomez-Sicilia
,
A. F.
Oberhauser
,
M.
Cieplak
, and
M.
Carrion-Vazquez
, “
Understanding biology by stretching proteins: Recent progress
,”
Curr. Opin. Struct. Biol.
20
,
63
69
(
2010
).
17.
P. G.
Wolynes
, “
Symmetry and the energy landscapes of biomolecules
,”
Proc. Natl. Acad. Sci. U.S.A.
93
,
14249
(
1996
).
18.
J. N.
Onuchic
,
Z.
Luthey-Schulten
, and
P. G.
Wolynes
, “
Theory of protein folding: The energy landscape perspective
,”
Annu. Rev. Phys. Chem.
48
,
545
600
(
1997
).
19.
E.
Alm
and
D.
Baker
, “
Prediction of protein-folding mechanisms from free energy landscapes derived from the native structures
,”
Proc. Natl. Acad. Sci. U.S.A.
96
,
11305
11310
(
1999
).
20.
S.
Takada
, “
Going for the prediction of protein folding mechanism
,”
Proc. Natl. Acad. Sci. U.S.A.
96
,
11698
11700
(
1999
).
21.
C.
Micheletti
,
J. R.
Banavar
,
A.
Maritan
, and
F.
Seno
, “
Protein structures and optimal folding from a geometrical variational principle
,”
Phys. Rev. Lett.
82
,
3372
(
1999
).
22.
D.
Baker
, “
A surprising simplicity to protein folding
,”
Nature (London)
405
,
39
42
(
2000
).
23.
R. B.
Best
,
Y. G.
Chen
, and
G.
Hummer
, “
Slow protein conformational dynamics from multiple experimental structures: The helix/sheet transition of arc repressor
,”
Structure
13
,
1755
1763
(
2005
).
24.
Y. G.
Chen
and
G.
Hummer
, “
Slow conformational dynamics and unfolding of the calmodulin C-terminal domain
,”
J. Am. Chem. Soc.
129
,
2414
2415
(
2007
).
25.
F. Q.
Zhu
and
G.
Hummer
, “
Gating transition of pentameric ligand-gated ion channels
,”
Biophys. J.
97
,
2456
2463
(
2009
).
26.
I.
Bahar
,
A. R.
Atilgan
, and
B.
Erman
, “
Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential
,”
Folding Des.
2
,
173
181
(
1997
).
27.
R. M.
Daniel
and
D. A.
Cowan
, “
Biomolecular stability and life at high temperatures
,”
CMLS Cell. Mol. Life Sci.
57
,
250
264
(
2000
).
28.
G.
Feller
, “
Protein stability and enzyme activity at extreme biological temperatures
,”
J. Phys.: Condens. Matter
22
,
323101
(
2010
).
29.
T.
Collins
,
C.
Gerday
, and
G.
Feller
, “
Xylanases, xylanase families and extremophilic xylanases
,”
FEMS Microbiol. Rev.
29
,
3
23
(
2005
).
30.
P.
Argos
,
M. G.
Rossmann
,
U. M.
Grau
,
H.
Zuber
,
G.
Frank
, and
J. D.
Tratschin
, “
Thermal stability and protein structure
,”
Biochemistry
18
,
5698
5703
(
1979
).
31.
R.
Jaenicke
and
G.
Boehm
, “
The stability of proteins in extreme environments
,”
Curr. Opin. Struct. Biol.
8
,
738
748
(
1998
).
32.
A.
Szilagyi
and
P.
Zavodszky
, “
Structural differences between mesoscopic, moderately thermophilic and extremely thermophilic protein subunits: Results of a comprehensive survey
,”
Structure
8
,
493
504
(
2000
).
33.
C.
Cambillau
and
J.-M.
Claverie
, “
Structural and genomic correlates of hyperthermostability
,”
J. Biol. Chem.
275
,
32383
32386
(
2000
).
34.
G.
Feller
and
C.
Gerday
, “
Psychrophilic enzymes: Hot topics in cold adaptation
,”
Nat. Rev. Microbiol.
1
,
200
208
(
2003
).
35.
D. C.
Demirjian
,
F.
Moris-Varas
, and
C. S.
Cassidy
, “
Enzymes from extremophiles
,”
Curr. Opin. Chem. Biol.
5
,
144
151
(
2001
).
36.
S.
Bjelic
,
B. O.
Brandsdal
, and
J.
Aqvist
, “
Cold adaptation of enzyme reaction rates
,”
Biochemistry
47
,
10049
10057
(
2008
).
37.
P. De
Maayer
,
D.
Anderson
,
C.
Cary
, and
D. A.
Cowan
, “
Some like it cold: Understanding the survival strategies of psychrophiles
,”
EMBO Rep.
15
,
508
517
(
2014
).
38.
R. J.
Russell
,
J. M.
Ferguson
,
D. W.
Hough
,
M. J.
Danson
, and
G. L.
Taylor
, “
The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiosus at 1.9 A resolution
,”
Biochemistry
36
,
9983
9994
(
1997
).
39.
S.
Remington
,
G.
Wiegand
, and
R.
Huber
, “
Crystallographic refinement and atomic models of two different forms of citrate synthase at 2.7 and 1.7 A resolution
,”
J. Mol. Biol.
158
,
111
152
(
1982
).
40.
R. J.
Russell
,
U.
Gerike
,
M. J.
Danson
,
D. W.
Hough
, and
G. L.
Taylor
, “
Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium
,”
Structure
6
,
351
361
(
1998
).
41.
D. R.
Boutz
,
D.
Cascio
,
J.
Whitelegge
,
L. J.
Perry
, and
T. O.
Yeates
, “
Discovery of a thermophilic protein complex stabilized by topologically interlinked chains
,”
J. Mol. Biol.
368
,
1332
1344
(
2007
).
42.
M.
Cieplak
and
T. X.
Hoang
, “
Folding of proteins in Go models with angular interactions
,”
Physica A
330
,
195
205
(
2003
).
43.
J.
Tsai
,
R.
Taylor
,
C.
Chothia
, and
M.
Gerstein
, “
The packing density in proteins: Standard radii and volumes
,”
J. Mol. Biol.
290
,
253
266
(
1999
).
44.
O.
Szklarczyk
,
K.
Staron
, and
M.
Cieplak
, “
Native state dynamics and mechanical properties of human topoisomerase I within a structure-based coarse-grained model
,”
Proteins: Struct. Funct. Bioinf.
77
,
420
431
(
2009
).
45.
W.
Kabsch
, “
A discussion of the solution for the best rotation to relate two sets of vectors
,”
Acta Crystallogr.
34
,
827
828
(
1978
).
46.
M.
Cieplak
and
M. O.
Robbins
, “
Nanoindentation of 35 virus capsids in a molecular model: Relating mechanical properties to structure
,”
PLoS ONE
8
,
e63640
(
2013
).
47.
M.
Cieplak
and
T. X.
Hoang
, “
Universality classes in folding times of proteins
,”
Biophys. J.
84
,
475
488
(
2003
).
48.
G. S.
Bell
,
R. J. M.
Russell
,
H.
Connaris
,
D. W.
Hough
,
M. J.
Danson
, and
G. L.
Taylor
, “
Stepwise adaptations of citrate synthase to survival at life's extremes
,”
Eur. J. Biochem.
269
,
6250
6260
(
2002
).
49.
M.
Karpusas
,
B.
Branchaud
, and
S. J.
Remington
, “
Proposed mechanism for the condensation reaction of citrate synthase: 1.9-A structure of the ternary complex with oxaloacetate and carboxymethyl coenzyme A
,”
Biochemistry
29
,
2213
2219
(
1990
).
50.
M.
Cieplak
and
J. I.
Sułkowska
, “
Thermal unfolding of proteins
,”
J. Chem. Phys.
123
,
194908
(
2005
).
51.
D. A.
Beard
,
K. C.
Vinnakota
, and
F.
Wu
, “
Detailed enzyme kinetics in terms of biochemical species: Study of citrate synthase
,”
PLoS ONE
3
,
e1825
(
2008
).
52.
C.
Pfleger
and
H.
Gohlke
, “
Efficient and robust analysis of biomacromolecular flexibility using ensembles of network topologies based on fuzzy noncovalent constraints
,”
Structure
21
,
1725
1734
(
2013
).
53.
See supplementary material at http://dx.doi.org/10.1063/1.4903747 for Table S1, Figs. S1 and S2.

Supplementary Material

You do not currently have access to this content.