In this paper, we report the existence of intervalence charge transfer (IVCT) luminescence in Yb-doped fluorite-type crystals associated with Yb2+–Yb3+ mixed valence pairs. By means of embedded cluster, wave function theory ab initio calculations, we show that the widely studied, very broad band, anomalous emission of Yb2+-doped CaF2 and SrF2, usually associated with impurity-trapped excitons, is, rather, an IVCT luminescence associated with Yb2+–Yb3+ mixed valence pairs. The IVCT luminescence is very efficiently excited by a two-photon upconversion mechanism where each photon provokes the same strong 4f14–1A1g→ 4f13(2F7/2)5deg–1T1u absorption in the Yb2+ part of the pair: the first one, from the pair ground state; the second one, from an excited state of the pair whose Yb3+ moiety is in the higher 4f13(2F5/2) multiplet. The Yb2+–Yb3+ → Yb3+–Yb2+ IVCT emission consists of an Yb2+ 5deg → Yb3+ 4f7/2 charge transfer accompanied by a 4f7/2 → 4f5/2 deexcitation within the Yb2+ 4f13 subshell: [2F5/25deg,2F7/2] → [2F7/2,4f14]. The IVCT vertical transition leaves the oxidized and reduced moieties of the pair after electron transfer very far from their equilibrium structures; this explains the unexpectedly large band width of the emission band and its low peak energy, because the large reorganization energies are subtracted from the normal emission. The IVCT energy diagrams resulting from the quantum mechanical calculations explain the different luminescent properties of Yb-doped CaF2, SrF2, BaF2, and SrCl2: the presence of IVCT luminescence in Yb-doped CaF2 and SrF2; its coexistence with regular 5d-4f emission in SrF2; its absence in BaF2 and SrCl2; the quenching of all emissions in BaF2; and the presence of additional 5d–4f emissions in SrCl2 which are absent in SrF2. They also allow to interpret and reproduce recent experiments on transient photoluminescence enhancement in Yb2+-doped CaF2 and SrF2, the appearance of Yb2+ 4f–5d absorption bands in the excitation spectra of the IR Yb3+ emission in partly reduced CaF2:Yb3+ samples, and to identify the broadband observed in the excitation spectrum of the so far called anomalous emission of SrF2:Yb2+ as an IVCT absorption, which corresponds to an Yb2+ 4f5/2 → Yb3+ 4f7/2 electron transfer.

1.
C. W. E.
van Eijk
,
Phys. Med. Biol.
47
,
R85
(
2002
).
2.
Spectroscopic Properties of Rare Earths in Optical Materials
, edited by
G.
Liu
and
B.
Jacquier
(
Springer
,
Berlin
,
2005
).
3.
Luminescence: From Theory to Applications
, edited by
C. R.
Ronda
(
Wiley-VCH
,
Weinheim
,
2007
).
4.
M. J.
Weber
,
J. Lumin.
100
,
35
(
2002
).
5.
P.
Dorenbos
,
J. Phys.: Condens. Matter
15
,
2645
(
2003
).
6.
P. P.
Feofilov
,
Opt. Spektrosk.
1
,
992
(
1956
).
7.
A. A.
Kaplyanskii
and
P. P.
Feofilov
,
Opt. Spectrosc.
13
,
129
(
1962
).
8.
E. G.
Reut
,
Opt. Spectrosc.
40
,
55
(
1976
).
9.
D. S.
McClure
and
C.
Pédrini
,
Phys. Rev. B
32
,
8465
(
1985
).
10.
B.
Moine
,
C.
Pédrini
,
D. S.
McClure
, and
H.
Bill
,
J. Lumin.
40 and 41
,
299
(
1988
).
11.
B.
Moine
,
B.
Courtois
, and
C.
Pédrini
,
J. Phys. France
50
,
2105
(
1989
).
12.
S. M.
Kaczmarek
,
T.
Tsuboi
,
M.
Ito
,
G.
Boulon
, and
G.
Leniec
,
J. Phys.: Condens. Matter
17
,
3771
(
2005
).
13.
M. F.
Reid
,
P. S.
Senanayake
,
J.-P. R.
Wells
,
G.
Berden
,
A.
Meijerink
,
A. J.
Salkeld
,
C.-K.
Duan
, and
R. J.
Reeves
,
Phys. Rev. B
84
,
113110
(
2011
).
14.
P. S.
Senanayake
,
J. P. R.
Wells
,
M. F.
Reid
,
G.
Berden
,
A.
Meijerink
, and
R. J.
Reeves
,
J. Lumin.
133
,
81
(
2013
).
15.
H.
Witzke
,
D. S.
McClure
, and
B.
Mitchell
, in
Luminescence of Crystals, Molecules, and Solutions
, edited by
F. E.
Williams
(
Plenum
,
New York
,
1973
), p.
598
.
16.
Z.
Pan
,
C.
Duan
, and
P. A.
Tanner
,
Phys. Rev. B
77
,
085114
(
2008
).
17.
A.
Bessière
,
P.
Dorenbos
,
C.
van Eijk
,
L.
Pidol
,
K.
Krämer
, and
H.
Güdel
,
J. Phys.: Condens. Matter
16
,
1887
(
2004
).
18.
A.
Bessière
,
P.
Dorenbos
,
C.
van Eijk
,
K.
Krämer
,
H.
Güdel
, and
A.
Galtayries
,
J. Lumin.
117
,
187
(
2006
).
19.
M.
Grinberg
,
J. Lumin.
131
,
433
(
2011
).
20.
E.
Loh
,
Phys. Rev.
175
,
533
(
1968
).
21.
E.
Loh
,
Phys. Rev.
184
,
348
(
1969
).
22.
L.
Su
,
J.
Xu
,
H.
Li
,
L.
Wen
,
W.
Yang
,
Z.
Zhao
,
J.
Si
,
Y.
Dong
, and
G.
Zhou
,
J. Cryst. Growth
277
,
264
(
2005
).
23.
L.
Su
,
J.
Xu
,
H.
Li
,
L.
Wen
,
Y.
Zhu
,
Z.
Zhao
,
Y.
Dong
,
G.
Zhou
, and
J.
Si
,
Chem. Phys. Lett.
406
,
254
(
2005
).
24.
L.
Seijo
and
Z.
Barandiarán
, “
Intervalence charge transfer luminescence: The anomalous luminescence of cerium-doped Cs2LiLuCl6 elpasolite
,”
J. Chem. Phys.
141
,
214706
(
2014
).
25.
J. W.
Verhoeven
,
Pure Appl. Chem.
68
,
2223
(
1996
).
26.
R. A.
Marcus
,
Annu. Rev. Phys. Chem.
15
,
155
(
1964
).
27.
G. C.
Allen
and
N. S.
Hush
,
Prog. Inorg. Chem.
8
,
357
(
1967
).
28.
N. S.
Hush
,
Prog. Inorg. Chem.
8
,
391
(
1967
).
29.
M.
Robin
and
P.
Day
,
Adv. Inorg. Chem. Radiochem.
10
,
247
(
1968
).
30.
S. B.
Piepho
,
E. R.
Krausz
, and
P. N.
Schatz
,
J. Amer. Chem. Soc.
100
,
2996
(
1978
).
31.
G.
Blasse
,
Struct. Bond.
76
,
153
(
1991
).
32.
W.
van Schaik
,
S.
Lizzo
,
W.
Smit
, and
G.
Blasse
,
J. Electrochem. Soc.
140
,
216
(
1993
).
33.
Z.
Barandiarán
,
A.
Meijerink
, and
L.
Seijo
, “
Configuration coordinate energy level diagrams of intervalence and metal-to-metal charge transfer states of dopand pairs in solids
” (unpublished).
34.
R.
McWeeny
,
Proc. R. Soc. Lond. A
253
,
242
(
1959
).
35.
G.
Karlström
,
R.
Lindh
,
P. A.
Malmqvist
,
B. O.
Roos
,
U.
Ryde
,
V.
Veryazov
,
P. O.
Widmark
,
M.
Cossi
,
B.
Schimmelpfennig
,
P.
Neogrady
 et al,
Comput. Mater. Sci.
28
,
222
(
2003
).
36.
R. W. G.
Wyckoff
,
Crystal Structures
, 2nd ed. (
Interscience Publishers
,
1982
), Vol.
2
.
37.
M.
Douglas
and
N. M.
Kroll
,
Ann. Phys. (N.Y.)
82
,
89
(
1974
).
38.
B. A.
Hess
,
Phys. Rev. A
33
,
3742
(
1986
).
39.
B. O.
Roos
,
R.
Lindh
,
P. A.
Malmqvist
,
V.
Veryazov
, and
P. O.
Widmark
,
J. Phys. Chem. A
108
,
2851
(
2004
).
40.
B. O.
Roos
,
R.
Lindh
,
P. A.
Malmqvist
,
V.
Veryazov
, and
P. O.
Widmark
,
J. Chem. Phys.
112
,
11431
(
2008
).
41.
Z.
Barandiarán
and
L.
Seijo
,
J. Chem. Phys.
89
,
5739
(
1988
).
42.
L.
Seijo
, and
Z.
Barandiarán
, in
Computational Chemistry: Reviews of Current Trends
, edited by
J.
Leszczyński
(
World Scientific
,
Singapore
,
1999
), Vol.
4
, pp.
55
152
.
43.
A.
Gellé
and
M.-B.
Lepetit
,
J. Chem. Phys.
128
,
244716
(
2008
).
44.
Z.
Barandiarán
and
L.
Seijo
,
J. Chem. Phys.
138
,
074102
(
2013
).
45.
J.
Olsen
,
B. O.
Roos
,
P.
Jørgensen
, and
J. A.
Jensen
,
J. Chem. Phys.
89
,
2185
(
1988
).
46.
P.-A.
Malmqvist
,
A.
Rendell
, and
B. O.
Roos
,
J. Phys. Chem.
94
,
5477
(
1990
).
47.
P.-Å.
Malmqvist
,
K.
Pierloot
,
A. R.
Moughal Shahi
,
C. J.
Cramer
, and
L.
Gagliardi
,
J. Chem. Phys.
128
,
204109
(
2008
).
48.
A.
Zaitsevskii
and
J.-P.
Malrieu
,
Chem. Phys. Lett.
233
,
597
(
1995
).
49.
J.
Finley
,
P.-A.
Malmqvist
,
B. O.
Roos
, and
L.
Serrano-Andrés
,
Chem. Phys. Lett.
288
,
299
(
1998
).
50.
G.
Ghigo
,
B. O.
Roos
, and
P.-Å.
Malmqvist
,
Chem. Phys. Lett.
396
,
142
(
2004
).
51.
N.
Forsberg
and
P.-A.
Malmqvist
,
Chem. Phys. Lett.
274
,
196
(
1997
).
52.
P. A.
Malmqvist
,
B. O.
Roos
, and
B.
Schimmelpfennig
,
Chem. Phys. Lett.
357
,
230
(
2002
).
53.
B. A.
Hess
,
C. M.
Marian
,
U.
Wahlgren
, and
O.
Gropen
,
Chem. Phys. Lett.
251
,
365
(
1996
).
54.
Detailed core and embedding AIMP data libraries in electronic format are available from the authors upon request or directly at the address http://www.uam.es/quimica/aimp/Data/AIMPLibs.html. See also Ref. 35.
55.
See supplementary material at http://dx.doi.org/10.1063/1.4902759 for detailed results of the quantum mechanical calculations on the donor (YbX8)6 − and acceptor (YbX8)5 − cubic clusters embedded in the four CaF2, SrF2, BaF2, and SrCl2 fluorite-type hosts. Diabatic IVCT energy diagrams and vertical absorptions and emissions of Yb2+Yb3+ pairs in the same hosts, calculated at the equilibrium geometry of various initial states of the pairs are also included.
56.
B.
Ordejón
,
L.
Seijo
, and
Z.
Barandiarán
,
J. Chem. Phys.
126
,
194712
(
2007
).
57.
G.
Sánchez-Sanz
,
L.
Seijo
, and
Z.
Barandiarán
,
J. Chem. Phys.
133
,
114509
(
2010
).
58.
Z.
Barandiarán
and
L.
Seijo
, “
Electronic structure and absorption and emission spectra of Yb2+ -doped CaF2
” (unpublished).
59.
J.
Grimm
and
H. U.
Güdel
,
Chem. Phys. Lett.
404
,
40
(
2005
).
60.
J.
Rubio
,
J. Phys. Chem. Solids
52
,
101
(
1991
).
61.
E. J.
Heller
,
J. Chem. Phys.
62
,
1544
(
1975
).
62.
E. J.
Heller
,
Acc. Chem. Res.
14
,
368
(
1981
).
63.
J. I.
Zink
and
K. S.
Shin
,
Advances in Photochemistry
(
Wiley
,
New York
,
1991
), Vol.
16
, pp.
119
214
.
64.
J.
Kirton
and
S. D.
McLaughlan
,
Phys. Rev.
155
,
279
(
1967
).
65.
T. S.
Piper
,
J. P.
Brown
, and
D. S.
McClure
,
J. Chem. Phys.
46
,
1353
(
1967
).
66.
G.
Sánchez-Sanz
,
L.
Seijo
, and
Z.
Barandiarán
,
J. Chem. Phys.
133
,
114506
(
2010
).
67.
Z. J.
Kiss
,
Phys. Rev.
127
,
718
(
1962
).

Supplementary Material

You do not currently have access to this content.