We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange–correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

1.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
2.
D.
Marx
and
J.
Hutter
,
Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
(
Cambridge University Press
,
Cambridge
,
2009
).
3.
E. B.
Wilson
 Jr.
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations
(
McGraw-Hill
,
New York
,
1955
).
4.
J.
Neugebauer
,
M.
Reiher
,
C.
Kind
, and
B. A.
Hess
,
J. Comput. Chem.
23
,
895
(
2002
).
5.
S.
Luber
,
C.
Herrmann
, and
M.
Reiher
,
J. Phys. Chem. B
112
,
2218
(
2008
).
6.
S.
Luber
and
M.
Reiher
,
Chem. Phys.
346
,
212
(
2008
).
7.
S.
Luber
,
J.
Neugebauer
, and
M.
Reiher
,
J. Chem. Phys.
130
,
064105
(
2009
).
8.
S.
Luber
and
M.
Reiher
,
J. Phys. Chem. A
113
,
8268
(
2009
).
9.
S.
Luber
and
M.
Reiher
,
ChemPhysChem
11
,
1876
(
2010
).
10.
S.
Luber
and
M.
Reiher
,
J. Phys. Chem. B
114
,
1057
(
2010
).
11.
O.
Mohammed
,
S.
Luber
,
V. S.
Batista
, and
E. T. J.
Nibbering
,
J. Phys. Chem. A
115
,
7550
(
2011
).
12.
T.
Weymuth
,
M. P.
Haag
,
K.
Kiewisch
,
S.
Luber
,
S.
Schenk
,
C. R.
Jacob
,
C.
Herrmann
,
J.
Neugebauer
, and
M.
Reiher
,
J. Comput. Chem.
33
,
2186
(
2012
).
13.
S.
Luber
,
K.
Adamczyk
,
E. T. J.
Nibbering
, and
V. S.
Batista
,
J. Phys. Chem. A
117
,
5269
(
2013
).
14.
R. D.
King-Smith
and
R.
Resta
,
Phys. Rev. B
47
,
1651
(
1993
).
15.
R.
Resta
,
Europhys. Lett.
22
,
133
(
1993
).
16.
R.
Resta
,
Rev. Mod. Phys.
66
,
899
(
1994
).
17.
D. M.
Bishop
,
F. L.
Gu
, and
B.
Kirtman
,
J. Chem. Phys.
114
,
7633
(
2001
).
18.
D.
Jacquemin
,
J.
André
, and
B.
Champagne
,
J. Chem. Phys.
118
,
3956
(
2003
).
19.
M.
Springborg
and
B.
Kirtman
,
Phys. Rev. B
77
,
045102
(
2008
).
20.
L.
Maschio
,
B.
Kirtman
,
R.
Orlando
, and
M.
Rérat
,
J. Chem. Phys.
137
,
204113
(
2012
).
21.
G. H.
Wannier
,
Phys. Rev.
52
,
191
(
1937
).
22.
N.
Marzari
and
D.
Vanderbilt
,
Phys. Rev. B
56
,
12847
(
1997
).
23.
M.
Bernasconi
,
P.
Silvestrelli
, and
M.
Parrinello
,
Phys. Rev. Lett.
81
,
1235
(
1998
).
24.
P. L.
Silvestrelli
and
M.
Parrinello
,
Phys. Rev. Lett.
82
,
3308
(
1999
).
25.
M.-P.
Gaigeot
and
M.
Sprik
,
J. Phys. Chem. B
107
,
10344
(
2003
).
26.
B.
Kirchner
and
J.
Hutter
,
J. Chem. Phys.
121
,
5133
(
2004
).
27.
M.-P.
Gaigeot
,
R.
Vuilleumier
,
M.
Sprik
, and
D.
Borgis
,
J. Chem. Theory Comput.
1
,
772
(
2005
).
28.
M.-P.
Gaigeot
,
Phys. Chem. Chem. Phys.
12
,
3336
(
2010
).
29.
C.
Zhang
,
D.
Donadio
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Theory Comput.
7
,
1443
(
2011
).
30.
M.
Thomas
,
M.
Brehm
,
R.
Fligg
,
P.
Vöhringer
, and
B.
Kirchner
,
Phys. Chem. Chem. Phys.
15
,
6608
(
2013
).
31.
R. G.
Gordon
and
Y. S.
Kim
,
J. Chem. Phys.
56
,
3122
(
1972
).
32.
Y. S.
Kim
and
R. G.
Gordon
,
J. Chem. Phys.
60
,
1842
(
1974
).
33.
G.
Senatore
and
K. R.
Subbaswamy
,
Phys. Rev. B
34
,
5754
(
1986
).
34.
P.
Cortona
,
Phys. Rev. B
44
,
8454
(
1991
).
35.
T. A.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
97
,
8050
(
1993
).
36.
M. E.
Casida
and
T. A.
Wesolowski
,
J. Quantum Chem.
96
,
577
(
2004
).
37.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
38.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
39.
T. A.
Wesolowski
,
J. Phys. A
36
,
10607
(
2003
).
40.
T. A.
Wesolowski
, “
One-electron equations for embedded electron density: Challenge for theory and practical payoffs in multi-level modeling of complex polyatomic systems
,” in
Computational Chemistry: Reviews of Current Trends
, edited by
J.
Leszcynski
(
World Scientific
,
Singapore
,
2006
), Vol.
10
, pp.
1
82
.
41.
O. V.
Gritsenko
and
L.
Visscher
,
Phys. Rev. A
82
,
032519
(
2010
).
42.
T.
Wesolowski
,
H.
Chermette
, and
J.
Weber
,
J. Chem. Phys.
105
,
9182
(
1996
).
43.
T.
Wesolowski
,
J. Chem. Phys.
106
,
8516
(
1997
).
44.
E.
Stefanovich
and
T.
Truong
,
J. Chem. Phys.
104
,
2946
(
1996
).
45.
J.
Trail
and
D.
Bird
,
Phys. Rev. B
62
,
16402
(
2000
).
46.
T.
Wesolowski
,
A.
Goursot
, and
J.
Weber
,
J. Chem. Phys.
115
,
4791
(
2001
).
47.
C. R.
Jacob
,
J.
Neugebauer
,
L.
Jensen
, and
L.
Visscher
,
Phys. Chem. Chem. Phys.
8
,
2349
(
2006
).
48.
C.
Jacob
,
T.
Wesolowski
, and
L.
Visscher
,
J. Chem. Phys.
123
,
174104
(
2005
).
49.
J.
Neugebauer
,
M. J.
Louwerse
,
E. J.
Baerends
, and
T. A.
Wesolowski
,
J. Chem. Phys.
122
,
094115
(
2005
).
50.
J.
Neugebauer
,
M.
Louwerse
,
P.
Belanzoni
,
T.
Wesolowski
, and
E.
Baerends
,
J. Chem. Phys.
123
,
114101
(
2005
).
51.
C. R.
Jacob
and
L.
Visscher
,
J. Chem. Phys.
125
,
194104
(
2006
).
52.
M.
Iannuzzi
,
B.
Kirchner
, and
J.
Hutter
,
Chem. Phys. Lett.
421
,
16
(
2006
).
53.
C. R.
Jacob
,
J.
Neugebauer
, and
L.
Visscher
,
J. Comput. Chem.
29
,
1011
(
2008
).
54.
K.
Kiewisch
,
G.
Eickerling
,
M.
Reiher
, and
J.
Neugebauer
,
J. Chem. Phys.
128
,
044114
(
2008
).
55.
J.
Neugebauer
and
E. J.
Baerends
,
J. Phys. Chem. A
110
,
8786
(
2006
).
56.
S.
Fux
,
K.
Kiewisch
,
C. R.
Jacob
,
J.
Neugebauer
, and
M.
Reiher
,
Chem. Phys. Lett.
461
,
353
(
2008
).
57.
R. E.
Bulo
,
C. R.
Jacob
, and
L.
Visscher
,
J. Phys. Chem. A
112
,
2640
(
2008
).
58.
J. D.
Goodpaster
,
T. A.
Barnes
, and
T. F.
Miller
 III
,
J. Chem. Phys.
134
,
164108
(
2011
).
59.
S.
Höfener
,
A. S. P.
Gomes
, and
L.
Visscher
,
J. Chem. Phys.
136
,
044104
(
2012
).
60.
S.
Laricchia
,
E.
Fabiano
, and
F.
Della Sala
,
J. Chem. Phys.
137
,
014102
(
2012
).
61.
A. S. P.
Gomes
,
C. R.
Jacob
,
F.
Real
,
L.
Visscher
, and
V.
Vallet
,
Phys. Chem. Chem. Phys.
15
,
15153
(
2013
).
62.
T.
Klüner
,
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
Phys. Rev. Lett.
86
,
5954
(
2001
).
63.
J.
Neugebauer
,
J. Chem. Phys.
126
,
134116
(
2007
).
64.
A. S. P.
Gomes
,
C. R.
Jacob
, and
L.
Visscher
,
Phys. Chem. Chem. Phys.
10
,
5353
(
2008
).
65.
J.
Neugebauer
,
J. Phys. Chem. B
112
,
2207
(
2008
).
66.
J.
Neugebauer
,
J. Chem. Phys.
131
,
084104
(
2009
).
67.
J.
Neugebauer
,
C.
Curutchet
,
A.
Munoz
-Losa, and
B.
Mennucci
,
J. Chem. Theory Comput.
6
,
1843
(
2010
).
68.
S.
Laricchia
,
E.
Fabiano
, and
F.
Della Sala
,
J. Chem. Phys.
133
,
164111
(
2010
).
69.
S.
Laricchia
,
E.
Fabiano
, and
F.
Della Sala
,
Chem. Phys. Lett.
518
,
114
(
2011
).
70.
C.
Huang
and
E. A.
Carter
,
J. Chem. Phys.
135
,
194104
(
2011
).
71.
F.
Aquilante
and
T. A.
Wesolowski
,
J. Chem. Phys.
135
,
084120
(
2011
).
72.
X.
Zhou
,
J. W.
Kaminski
, and
T. A.
Wesolowski
,
Phys. Chem. Chem. Phys.
13
,
10565
(
2011
).
73.
C.
Koenig
and
J.
Neugebauer
,
Phys. Chem. Chem. Phys.
13
,
10475
(
2011
).
74.
C.
König
,
N.
Schluter
, and
J.
Neugebauer
,
J. Chem. Phys.
138
,
034104
(
2013
).
75.
M.
Pavanello
and
J.
Neugebauer
,
J. Chem. Phys.
135
,
234103
(
2011
).
76.
M.
Pavanello
,
T.
Van Voorhis
,
L.
Visscher
, and
J.
Neugebauer
,
J. Chem. Phys.
138
,
054101
(
2013
).
77.
M.
Pavanello
,
J. Chem. Phys.
138
,
204118
(
2013
).
78.
N.
Govind
,
Y.
Wang
,
A.
da Silva
, and
E.
Carter
,
Chem. Phys. Lett.
295
,
129
(
1998
).
79.
N.
Govind
,
Y.
Wang
, and
E.
Carter
,
J. Chem. Phys.
110
,
7677
(
1999
).
80.
P.
Huang
and
E. A.
Carter
,
J. Chem. Phys.
125
,
084102
(
2006
).
81.
D.
Lahav
and
T.
Kluener
,
J. Phys. Condens. Matter
19
,
226001
(
2007
).
82.
S.
Sharifzadeh
,
P.
Huang
, and
E. A.
Carter
,
Chem. Phys. Lett.
470
,
347
(
2009
).
83.
S.
Höfener
and
L.
Visscher
,
J. Chem. Phys.
137
,
204120
(
2012
).
84.
During the reviewing process of this paper, another paper was published [
Pavanello
 et al,
J. Chem. Phys.
141
,
174101
(
2014
)] describing an implementation for periodic subsystem density functional theory similar to the one in the CP2K program (using a pure plane wave code instead of the mixed Gaussian and plane wave approach as employed in CP2K).
85.
J.
VandeVondele
,
U.
Borstnik
, and
J.
Hutter
,
J. Chem. Theory Comput.
8
,
3565
(
2012
).
86.
K.
Kitaura
,
E.
Ikeo
,
T.
Asada
,
T.
Nakano
, and
M.
Uebayasi
,
Chem. Phys. Lett.
313
,
701
(
1999
).
87.
R. Z.
Khaliullin
,
E. A.
Cobar
,
R. C.
Locha
,
A. T.
Bell
, and
M.
Head-Gordon
,
J. Chem. Phys.
111
,
8753
(
2007
).
88.
M. S.
Gordon
,
D. G.
Fedorov
,
S. R.
Pruitt
, and
L. V.
Slipchenko
,
Chem. Rev.
112
,
632
(
2012
).
89.
H.
Reis
,
M. G.
Papadopoulos
, and
R. W.
Munn
,
J. Chem. Phys.
109
,
6828
(
1998
).
90.
M. A.
Spackman
,
P.
Munshi
, and
D.
Jayatilaka
,
Chem. Phys. Lett.
443
,
87
(
2007
).
91.
D.
Jayatilaka
,
P.
Munshi
,
M. J.
Turner
,
J. A. K.
Howard
, and
M. A.
Spackman
,
Phys. Chem. Chem. Phys.
11
,
7209
(
2009
).
92.
T.
Seidler
,
K.
Stadnicka
, and
B.
Champagne
,
J. Chem. Phys.
139
,
114105
(
2013
).
93.
G.
Lippert
,
J.
Hutter
, and
M.
Parrinello
,
Mol. Phys.
92
,
477
(
1997
).
94.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
95.
A.
Seidl
,
A.
Görling
,
P.
Vogl
,
J. A.
Majewski
, and
M.
Levy
,
Phys. Rev. B
53
,
3764
(
1996
).
96.
T.
Wesolowski
and
J.
Weber
,
Chem. Phys. Lett.
248
,
71
(
1996
).
97.
M. V.
Berry
,
Proc. R. Soc. London, Ser. A
392
,
45
(
1984
).
98.
R.
Resta
,
Berry Phase in Electronic Wavefunctions
,
Troisème Cycle Lecture Notes
(
Ecole Polytechnique Fédérale
,
Lausanne
,
1996
).
99.
R.
Resta
,
Phys. Rev. Lett.
80
,
1800
(
1998
).
100.
P. L.
Silvestrelli
,
Phys. Rev. B
59
,
9703
(
1999
).
101.
R. M.
Martin
and
G.
Ortiz
,
Phys. Rev. B
56
,
1124
(
1997
).
102.
X.
Gonze
,
P.
Ghosez
, and
R. W.
Godby
,
Phys. Rev. Lett.
74
,
4035
(
1995
).
103.
X.
Gonze
,
P.
Ghosez
, and
R. W.
Godby
,
Phys. Rev. Lett.
78
,
294
(
1997
).
104.
X.
Gonze
,
P.
Ghosez
, and
R. W.
Godby
,
Phys. Rev. Lett.
78
,
2029
(
1997
).
105.
P.
Ghosez
,
X.
Gonze
, and
R. W.
Godby
,
Phys. Rev. B
56
,
12811
(
1997
).
106.
G.
Ortiz
,
I.
Souza
, and
R. M.
Martin
,
Phys. Rev. Lett.
80
,
353
(
1998
).
107.
R. M.
Martin
and
G.
Ortiz
,
Int. J. Quantum Chem.
69
,
567
(
1998
).
108.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
,
Rev. Mod. Phys.
84
,
1419
(
2012
).
109.
T.
Wesolowski
,
J. Am. Chem. Soc.
126
,
11444
(
2004
).
110.
A. W.
Götz
,
S.
Maya Beyhan
, and
L.
Visscher
,
J. Chem. Theory Comput.
5
,
3161
(
2009
).
111.
T. A.
Wesolowski
,
Y.
Ellinger
, and
J.
Weber
,
J. Chem. Phys.
108
,
6078
(
1998
).
112.
T. A.
Wesolowski
,
P.-Y.
Morgantini
, and
J.
Weber
,
J. Chem. Phys.
116
,
6411
(
2002
).
113.
S. M.
Beyhan
,
A. W.
Gotz
, and
L.
Visscher
,
J. Chem. Phys.
138
,
094113
(
2013
).
114.
R.
Kevorkyants
,
H.
Eshuis
, and
M.
Pavanello
,
J. Chem. Phys.
141
,
044127
(
2014
).
115.
S. M.
Beyhan
,
A. W.
Götz
,
C. R.
Jacob
, and
L.
Visscher
,
J. Chem. Phys.
132
,
044114
(
2010
).
116.
CP2K Developers Group, URL: http://www.cp2k.org.
117.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
118.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
,
Phys. Rev. B
58
,
3641
(
1998
).
119.
M.
Krack
,
Theor. Chem. Acc.
114
,
145
(
2005
).
120.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
121.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
122.
H.
Lee
,
C.
Lee
, and
R.
Parr
,
Phys. Rev. A
44
,
768
(
1991
).
123.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
124.
M.
Morita
,
Y.
Asai
,
N.
Yoshimoto
, and
M.
Ishikawa
,
J. Chem. Soc. Faraday Trans.
94
,
3451
(
1998
).
125.
S. K.
Reddy
and
S.
Balasubramanian
,
J. Phys. Chem. B
116
,
14892
(
2012
).
126.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
127.
S.
Nosé
,
Mol. Phys.
52
,
255
(
1984
).
128.
M.
Brehm
and
B.
Kirchner
,
J. Chem. Inf. Model.
51
,
2007
(
2011
).
129.
R.
Ramírez
,
T.
López-Ciudad
,
P.
Kumar
, and
D.
Marx
,
J. Chem. Phys.
121
,
3973
(
2004
).
130.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
, 90th ed. (
CRC Press
,
Cleveland, OH
,
2009
).
131.
S.
Luber
,
M.
Iannuzzi
, and
J.
Hutter
,
J. Chem. Phys.
141
,
094503
(
2014
).
132.
C. R.
Jacob
,
S.
Luber
, and
M.
Reiher
,
J. Phys. Chem. B
113
,
6558
(
2009
).
133.
C. R.
Jacob
,
S.
Luber
, and
M.
Reiher
,
Chem.-Eur. J.
15
,
13491
(
2009
).
134.
S.
Luber
,
J. Phys. Chem. A
117
,
2760
(
2013
).
135.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
136.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
137.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
138.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
139.
The calculations were performed on one node of a Cray XC30 machine equipped with an 8-core 64-bit Intel SandyBridge CPU (Intel Xeon E5-2670), a NVIDIA Tesla K20X with 6 GB GDDR5 memory and 32 GB of host memory.
140.
M.
Guidon
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
6
,
2348
(
2010
).
141.
C.
Lee
and
R. G.
Parr
,
Phys. Rev. A
35
,
2377
(
1987
).
142.
L. H.
Thomas
,
Proc. R. Soc. London, Ser. A
114
,
561
(
1927
).
143.
E.
Fermi
,
Rend. Accad. Naz. Lincei
6
,
32
(
1927
).
144.
J. P.
Perdew
,
Phys. Lett. A
165
,
79
(
1992
).
145.
F.
Tran
and
T. A.
Wesolowski
,
Int. J. Quantum Chem.
89
,
441
(
2002
).
146.
A.
Lembarki
and
H.
Chermette
,
Phys. Rev. A
50
,
5328
(
1994
).
147.
E. W.
Pearson
and
R. G.
Gordon
,
J. Chem. Phys.
82
,
881
(
1985
).
148.
D. J.
Lacks
and
R. G.
Gordon
,
J. Chem. Phys.
100
,
4446
(
1994
).
149.
R.
Imhof
and
P.
Novák
,
J. Electrochem. Soc.
145
,
1081
(
1998
).
150.
D.
Aurbach
,
Y.
Gofer
,
M.
Ben-Zion
, and
P.
Aped
,
J. Electroanal. Chem.
339
,
451
(
1992
).
151.
K.
Xu
,
Chem. Rev.
104
,
4303
(
2004
).
152.
P.
Verma
,
P.
Maire
, and
P.
Novák
,
Electrochim. Acta
55
,
6332
(
2010
).
153.
W.
Märkle
,
C. Y.
Lu
, and
P.
Novák
,
J. Electrochem. Soc.
158
,
A1478
(
2011
).
154.
S.
Pérez-Villar
,
P.
Lanz
,
H.
Schneider
, and
P.
Novák
,
Electrochim. Acta
106
,
506
(
2013
).
155.
K.
Hongyou
,
T.
Hattori
,
Y.
Nagai
,
T.
Tanaka
,
H.
Nii
, and
K.
Shoda
,
J. Power Sources
243
,
72
(
2013
).
156.
K.
Leung
,
J. Phys. Chem. C
117
,
1539
(
2013
).
157.
K.
Leung
,
Chem. Phys. Lett.
568–569
,
1
(
2013
).
158.
R.
Jorn
,
R.
Kumar
,
D. P.
Abraham
, and
G. A.
Voth
,
J. Phys. Chem. C
117
,
3747
(
2013
).
159.
D.
Aurbach
,
Y.
Ein-Eli
,
O.
Chusid
,
Y.
Carmeli
,
M.
Babai
, and
H.
Yamin
,
J. Electrochem. Soc.
141
,
603
(
1994
).
160.
F.
Joho
and
P.
Novák
,
Electrochim. Acta
45
,
3589
(
2000
).
161.
M. D.
Bhatt
,
M.
Cho
, and
K.
Cho
,
Modell. Simul. Mater. Sci. Eng.
20
,
065004
(
2012
).
162.
J. L.
Alonso
,
R.
Cervellati
,
A.
Esposti
,
D.
Lister
, and
P.
Palmier
,
J. Chem. Soc., Faraday Trans. 2
82
,
357
(
1986
).
163.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
164.
J.
Nafziger
and
A.
Wasserman
,
J. Phys. Chem. A
118
,
7623
(
2014
).
You do not currently have access to this content.