The self-consistent field method utilized for solving the Hartree-Fock (HF) problem and the closely related Kohn-Sham problem is typically thought of as one of the cheapest methods available to quantum chemists. This intuition has been developed from the numerous applications of the self-consistent field method to a large variety of molecular systems. However, as characterized by its worst-case behavior, the HF problem is NP-complete. In this work, we map out boundaries of the NP-completeness by investigating restricted instances of HF. We have constructed two new NP-complete variants of the problem. The first is a set of Hamiltonians whose translationally invariant Hartree-Fock solutions are trivial, but whose broken symmetry solutions are NP-complete. Second, we demonstrate how to embed instances of spin glasses into translationally invariant Hartree-Fock instances and provide a numerical example. These findings are the first steps towards understanding in which cases the self-consistent field method is computationally feasible and when it is not.

1.
D.
Hartree
,
Proc. Camb. Phil. Soc.
24
,
89
(
1928
).
3.
S.
Goedecker
,
Rev. Mod. Phys.
71
,
1085
(
1999
).
4.
5.
V. R.
Saunders
and
I. H.
Hillier
,
Intl. J. Quant. Chem.
7
,
699
(
1973
).
7.
S.
Veeraraghavan
and
D. A.
Mazziotti
,
J. Chem. Phys.
140
,
124106
(
2014
);
[PubMed]
S.
Veeraraghavan
and
D. A.
Mazziotti
,
Phys. Rev. A
89
,
010502
(R) (
2014
).
8.
A. D.
Rabuck
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
695
(
1999
).
9.
L.
Thøgersen
,
J.
Olsen
,
D.
Yeager
,
P.
Jørgensen
,
P.
Salek
, and
T.
Helgaker
,
J. Chem. Phys.
121
,
16
(
2004
).
10.
K. N.
Kudin
,
G. E.
Scuseria
, and
E.
Cancès
,
J. Chem. Phys.
116
,
8255
(
2002
).
11.
N.
Schuch
and
F.
Verstraete
,
Nature Phys.
5
,
732
(
2009
), also see the Appendix; e-print arXiv:0712.0483.
12.
J. D.
Whitfield
,
P. J.
Love
, and
A.
Aspuru-Guzik
,
Phys. Chem. Chem. Phys.
15
,
397
(
2013
).
13.
A. W.
Overhauser
,
Phys. Rev. Lett.
4
,
415
(
1960
).
14.
P.
Lykos
and
G. W.
Pratt
,
Rev. Mod. Phys.
35
,
496
(
1963
).
15.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Thomson Learning
,
1976
).
16.
M. P.
Stevens
,
Polymer Chemistry
(
Oxford University Press
,
New York
,
1990
).
17.
I.
Bloch
,
J.
Dalibard
, and
W.
Zwerger
,
Rev. Mod. Phys.
80
,
885
(
2008
).
18.
Let us note here that it is obvious that the Hartree-Fock problems are in NP, as their solution is easy to check.
19.
F.
Barahona
,
J. Phys. A: Math. Gen.
15
,
3241
(
1982
).
20.
S.
Istrail
, in
Proceedings of the 32nd ACM Symposium on Theory of Computing (STOC '00)
(
ACM Press
, New York,
2000
), p.
87
.
21.
J. D.
Whitfield
,
M.
Faccin
, and
J. D.
Biamonte
,
EuroPhys. Lett.
99
,
57004
(
2012
).
23.
24.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
2009
).
25.
T. J.
Osborne
,
Rep. Prog. Phys.
75
,
022001
(
2012
).
26.
D.
Gottesman
and
S.
Irani
,
Theory Comput.
9
,
31
(
2013
); e-print arXiv:0905.2419.
You do not currently have access to this content.