Motivated by the intriguing phase behavior of charged colloidal platelets, we investigate the structure and dynamics of charged repulsive disks by means of Monte Carlo simulations. The electrostatic interactions are taken into account through an effective two-body potential, obtained within the nonlinear Poisson-Boltzmann formalism, which has the form of anisotropic screened Coulomb potential. Recently, we showed that the original intrinsic anisotropy of the electrostatic potential in competition with excluded volume effects leads to a rich phase behavior that not only includes various liquid-crystalline phases but also predicts the existence of novel structures composed of alternating nematic-antinematic sheets. Here, we examine the structural and dynamical signatures of each of the observed structures for both translational and rotational degrees of freedom. Finally, we discuss the influence of effective charge value and our results in relation to experimental findings on charged platelet suspensions.

1.
E.
Paineau
,
K.
Antonova
,
C.
Baravian
,
I.
Bihannic
,
P.
Davidson
,
I.
Dozov
,
M.
Impéror-Clerc
,
P.
Levitz
,
A.
Madsen
,
F.
Meneau
, and
L. J.
Michot
,
J. Phys. Chem. B
113
,
15858
(
2009
).
2.
L. J.
Michot
,
I.
Bihannic
,
S.
Maddi
,
S. S.
Funari
,
C.
Baravian
,
P.
Levitz
, and
P.
Davidson
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
16101
(
2006
).
3.
B.
Ruzicka
and
E.
Zaccarelli
,
Soft Matter
7
,
1268
(
2011
).
4.
S.
Jabbari-Farouji
,
H.
Tanaka
,
G. H.
Wegdam
, and
D.
Bonn
,
Phys. Rev. E
78
,
061405
(
2008
).
5.
J.-C. P.
Gabriel
,
C.
Sanchez
, and
P.
Davidson
,
J. Phys. Chem.
100
,
11139
(
1996
).
6.
A.
Bakk
,
J. O.
Fossum
,
G. J.
da Silva
,
H. M.
Adland
,
A.
Mikkelsen
, and
A.
Elgsaeter
,
Phys. Rev. E
65
,
021407
(
2002
).
7.
E.
DiMasi
,
J. O.
Fossum
,
T.
Gog
, and
C.
Venkataraman
,
Phys. Rev. E
64
,
220405
(
2001
).
8.
N.
Miyamoto
,
H.
Iijima
,
H.
Ohkubo
, and
Y.
Yamauchi
,
Chem. Commun.
46
,
4166
(
2010
).
9.
D.
Sun
,
H.-J.
Sue
,
Z.
Cheng
,
Y.
Martinez-Ratun
, and
E.
Velasco
,
Phys. Rev. E
80
,
041704
(
2009
).
10.
M. C. D.
Mourad
,
D. V.
Byelov
,
A. V.
Petukhov
,
D. A.
Matthijs de Winter
,
A. J.
Verkleij
, and
H. N. W.
Lekkerkerker
,
J. Phys. Chem. B
113
,
11604
(
2009
).
11.
M. C. D.
Mourad
,
D. V.
Byelov
,
A. V.
Petukhov
, and
H. N. W.
Lekkerkerker
,
J. Phys.: Condens. Matter
20
,
494201
(
2008
).
12.
D.
van der Beek
and
H. N. W.
Lekkerkerker
,
Langmuir
20
,
8582
(
2004
).
13.
F. M.
van der Kooij
,
K.
Kassapidou
, and
H. N. W.
Lekkerkerker
,
Nature (London)
406
,
868
(
2000
).
14.
S. Y.
Liu
,
J.
Zhang
,
N.
Wang
,
W. R.
Liu
,
C. G.
Zhang
, and
D. J.
Sun
,
Chem. Mater.
15
,
3240
(
2003
).
15.
A. B. D.
Brown
and
A. R.
Rennie
,
Phys. Rev. E
62
,
851
(
2000
).
16.
A. F.
Mejia
,
Z.
Cheng
, and
M. S.
Mannan
,
Phys. Rev. E
85
,
061708
(
2012
).
17.
Z.
Liu
,
R.
Ma
,
M.
Osada
,
N.
Iyi
,
Y.
Ebina
,
K.
Takada
, and
T.
Sasaki
,
J. Am. Chem. Soc.
128
(
14
),
4872
(
2006
).
18.
D.
Yamaguchi
,
N.
Miyamoto
,
T.
Fujita
,
T.
Nakato
,
S.
Koizumi
,
N.
Ohta
,
N.
Yagi
, and
T.
Hashimoto
,
Phys. Rev. E
85
,
011403
(
2012
).
19.
N.
Miyamoto
and
T. J.
Nakato
,
Phys. Chem. B
108
,
6152
(
2004
).
20.
N.
Miyamoto
and
N. T.
Nakato
,
Langmuir
19
,
8057
(
2003
).
21.
T.
Nakato
and
N.
Miyamoto
,
J. Mater. Chem.
12
,
1245
(
2002
).
22.
J. C. P.
Gabriel
,
F.
Camerel
,
B. J.
Lemaire
,
H.
Desvaux
,
P.
Davidson
, and
P.
Batail
,
Nature (London)
413
,
504
(
2001
).
23.
S.
Jabbari-Farouji
,
J.-J.
Weis
,
P.
Davidson
,
P.
Levitz
, and
E.
Trizac
,
Sci. Rep.
3
,
3559
(
2013
).
24.
R.
Agra
,
E.
Trizac
, and
L.
Bocquet
,
Eur. Phys. J. E
15
,
345
(
2004
).
25.
C.
Álvarez
and
G.
Téllez
,
J. Chem. Phys.
133
,
144908
(
2010
).
26.
D. G.
Rowan
,
J.-P.
Hansen
, and
E.
Trizac
,
Mol. Phys.
98
,
1369
(
2000
).
27.
M.
Dijkstra
,
J. P.
Hansen
, and
P. A.
Madden
,
Phys. Rev. Lett.
75
,
2236
(
1995
).
28.
L.
Morales-Anda
,
H. H.
Wensink
,
A.
Galindo
, and
A.
Gil-Villegas
,
J. Chem. Phys.
132
,
034901
(
2012
).
29.
S.
Kutter
,
J.
Hansen
,
R. M.
Sprik
, and
E.
Boek
,
J. Chem. Phys.
112
,
311
(
2000
).
30.
S.
Mossa
,
C.
de Michele
, and
F.
Sciortino
,
J. Chem. Phys.
126
,
014905
(
2007
).
31.
M.
Delhorme
,
B.
Jonsson
, and
C.
Labbez
,
Soft Matter
8
,
9691
(
2012
).
32.
M.
Delhorme
,
B.
Jonsson
, and
C.
Labbez
,
J. Phys. Chem. Lett.
3
,
1315
(
2012
).
33.
D.
Léger
and
D.
Levesque
,
J. Chem. Phys.
116
,
2251
(
2002
).
34.
E.
Trizac
,
L.
Bocquet
, and
M.
Aubouy
,
Phys. Rev. Lett.
89
,
248301
(
2002
).
35.
L.
Bocquet
,
E.
Trizac
, and
M.
Aubouy
,
J. Chem. Phys.
117
,
8138
(
2002
).
36.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
1987
).
37.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
2001
).
38.
G.
Salin
and
J. M.
Caillol
,
J. Chem. Phys.
113
,
10459
(
2000
).
39.
S.
Kirkpatrick
,
C. D.
Gelatt
, and
M. P.
Vecchi
,
Science
20
(
4598
),
671
(
1983
).
40.
S.
Jabbari-Farouji
and
E.
Trizac
,
J. Chem. Phys.
137
,
054107
(
2012
).
41.
Another point should be added. The free energy calculation route for this model, by thermodynamic integration, would face the difficulty that there are no convenient reference states for which the free energies are accurately known.
42.
R.
van Roij
,
M.
Dijkstra
, and
J. P.
Hansen
,
Phys. Rev. E
59
,
2010
2025
(
1999
).
43.
L.
Belloni
,
J. Phys.: Condens. Matter
12
,
R549
(
2000
).
44.
J.
Dobnikar
,
R.
Castaneda-Priego
,
H. H.
von Grünberg
, and
E.
Trizac
,
New J. Phys.
8
,
277
(
2006
).
45.
A. R.
Denton
,
J. Phys.: Condens. Matter
22
,
364108
(
2010
).
46.
R.
Eppenga
and
D.
Frenkel
,
Mol. Phys.
52
,
1303
(
1984
).
47.
L.
Harnau
,
Mol. Phys.
106
,
1975
(
2008
).
48.
M. O.
Robbins
,
K.
Kremer
, and
G. S.
Grest
,
J. Chem. Phys.
88
(
5
),
3286
(
1998
).
49.
A.-P.
Hynninen
and
M.
Dijkstra
,
Phys. Rev. E
68
,
021407
(
2003
).
50.
Y.
Monovoukas
and
A. P.
Gast
,
J. Colloid Interface Sci.
128
,
533
(
1989
).
51.
H. M.
Lindsay
and
P. M.
Chaikin
,
J. Chem. Phys.
76
,
3774
(
1982
).
52.
B.
Abou
,
D.
Bonn
, and
J.
Meunier
,
Phys. Rev. E
64
,
021510
(
2001
).
53.
P.
van der Schoot
,
Supramolecular Polymers
, 2nd ed. (
CRC
,
2005
), Chap. 2, pp.
77
106
.
54.
Z.
Zheng
,
F.
Wang
, and
Y.
Han
,
Phys. Rev. Lett.
107
,
065702
(
2011
).
55.
M.
Letz
,
R.
Schilling
, and
A.
Latz
,
Phys. Rev. E
62
,
5173
(
2000
).
56.
K.
Sokalski
and
Th. W.
Ruijgrok
,
Physica A
126
,
280
(
1984
).
57.
I. A.
Georgiou
,
P.
Ziherl
, and
G.
Kahl
,
EPL
106
,
44004
(
2014
).
58.
M.
Marechal
,
A.
Cuetos
,
B.
Martinez-Haya
, and
M.
Dijkstra
,
J. Chem. Phys.
134
,
094501
(
2011
).
59.
A. B.
Martinez-Haya
,
J. Chem. Phys.
129
,
214706
(
2008
).
60.
G.
Odriozola
,
J. Chem. Phys.
36
,
134505
(
2012
).
61.
P.
Levitz
,
E.
Lecolier
,
A.
Mourchid
,
A.
Delville
, and
S.
Lyonnard
,
Europhys. Lett.
49
(
5
),
672
(
2000
).
62.
D.
Kleshchanok
,
M.
Heinen
,
G.
Nägele
, and
P.
Holmqvist
,
Soft Matter
8
,
1584
(
2012
).
63.
C.
Baravian
,
L. J.
Michot
,
E.
Paineau
,
I.
Bihannic
,
P.
Davidson
,
M.
Impéror-Clerc
,
E.
Belamie
, and
P.
Levitz
,
Europhys. Lett.
90
,
36005
(
2010
).
64.
P.
Holmqvist
,
V.
Meester
,
F.
Westermeier
, and
D.
Kleshchanok
,
J. Chem. Phys.
139
,
084905
(
2013
).
65.
D.
Bonn
,
D. H.
Tanaka
,
G.
Wegdam
,
H.
Kellay
, and
J.
Meunier
,
Europhys. Lett.
45
,
52
(
1998
).
66.
E.
Zaccarelli
,
S.
Andreev
,
F.
Sciortino
, and
D. R.
Reichman
,
Phys. Rev. Lett.
100
,
195701
(
2008
).
67.
B.
Ruzicka
,
E.
Zaccarelli
,
L.
Zulian
,
R.
Angelini
,
M.
Sztucki
,
A.
Moussaid
,
T.
Narayanan
, and
F.
Sciortino
,
Nat. Mater.
10
,
56
(
2011
).
68.
Li
Li
,
L.
Harnau
,
S.
Rosenfeldt
, and
M.
Ballauff
,
Phys. Rev. E
72
,
051504
(
2005
).
69.
N.
Wang
,
S.
Liu
,
J.
Zhang
,
Z.
Wu
,
J.
Chen
, and
D.
Sun
,
Soft Matter
1
,
428
(
2005
).
70.
J. M.
Caillol
,
F.
Lo Verso
,
E.
Schöll-Paschinger
, and
J.-J.
Weis
,
Mol. Phys.
105
,
1813
(
2007
).
You do not currently have access to this content.