A detailed theoretical analysis, based on extensive ab initio second-order approximate coupled cluster calculations, has been performed for the S1 potential energy surface (PES) of four photoactive yellow protein (PYP) chromophore derivatives that are hydrogen bonded with two water molecules and differ merely in the carbonyl substituent. The main focus is put on contrasting the isomerization properties of these four species in the S1 excited state, related to torsion around the chromophore's single and double carbon-carbon bonds. The analysis provides evidence of the different isomerization behavior of these four chromophore complexes, which relates to the difference in their carbonyl substituents. While a stable double-bond torsion pathway exists on the S1 PES of the chromophores bearing the –O–CH3 and –NH2 substituents, this is not the case for the –S–CH3 and –CH3 substituted species. The presence of the –S–CH3 group leads to a strong instability of the chromophore with respect to the single-bond twist, whereas in the case of the –CH3 substituent a crossing of the S1 and S2 PESs occurs, which perturbs the pathway. Based on this analysis, the key factors that support the double-bond torsion have been identified. These are (i) the hydrogen bonds at the phenolic oxygen of the chromophore, (ii) the weak electron-acceptor character of the carbonyl group, and (iii) the ethylene-like pattern of the torsion in the beginning of the process. Our results suggest that the interplay between these factors determines the chromophore's isomerization in the solvent environment and in the native PYP environment.

1.
M. A.
Van Der Horst
and
K. J.
Hellingwerf
,
Acc. Chem. Res.
37
,
13
(
2004
).
2.
K. J.
Hellingwerf
,
J. Photochem. Photobiol. B
54
,
94
(
2000
).
3.
T. E.
Meyer
,
E.
Yakali
,
M. A.
Cusanovich
, and
G.
Tollin
,
Biochemistry
26
,
418
(
1987
).
4.
T. E.
Meyer
,
Biochim. Biophys. Acta
806
,
175
(
1985
).
5.
W. W.
Sprenger
,
W. D.
Hoff
,
J. P.
Armitage
, and
K. J.
Hellingwerf
,
J. Bacteriol.
175
,
3096
(
1993
).
6.
K. J.
Hellingwerf
,
J.
Hendriks
, and
T.
Gensch
,
J. Phys. Chem. A
107
,
1082
(
2003
).
7.
U. K.
Genick
,
S. M.
Soltis
,
P.
Kuhn
,
I. L.
Canestrelli
, and
E. D.
Getzoff
,
Nature (London)
392
,
206
(
1998
).
8.
U. K.
Genick
,
G. E. O.
Borgstahl
,
N.
Kingman
,
Z.
Ren
,
C.
Pradervand
,
P. M.
Burke
,
V.
Šrajer
,
T.-Y.
Teng
,
W.
Schildkamp
,
D. E.
McRee
,
K.
Moffat
, and
E. D.
Getzoff
,
Science
275
,
1471
(
1997
).
9.
G. E. O.
Borgstahl
,
D. R.
Williams
, and
E. D.
Getzoff
,
Biochemistry
34
,
6278
(
1995
).
10.
M.
Baca
,
G. E. O.
Borgstahl
,
M.
Boissinot
,
P. M.
Burke
,
D. R.
Williams
,
K. A.
Slater
, and
E. D.
Getzoff
,
Biochemistry
33
,
14369
(
1994
).
11.
K.
Heyne
,
O. F.
Mohammed
,
A.
Usman
,
J.
Dreyer
,
E.
Nibbering
, and
M. A.
Cusanovich
,
J. Am. Chem. Soc.
127
,
18100
(
2005
).
12.
M. L.
Groot
,
L.
Wilderen
,
D. S.
Larsen
,
M.
Horst
,
I.
Stokkum
,
K. J.
Hellingwerf
, and
R.
van Grondelle
,
Biochemistry
42
,
10054
(
2003
).
13.
Z.
Ren
,
B.
Perman
,
V.
Šrajer
,
T.
Teng
,
C.
Pradervand
,
D.
Bourgeois
,
F.
Schotte
,
T.
Ursby
,
R.
Kort
,
M.
Wulff
, and
K.
Moffat
,
Biochemistry
40
,
13788
(
2001
).
14.
B.
Perman
,
V.
Šrajer
,
Z.
Ren
,
T.
Teng
,
C.
Pradervand
,
T.
Ursby
,
D.
Bourgeois
,
F.
Schotte
,
M.
Wulff
,
R.
Kort
,
M.
Wulff
,
K.
Hellingwerf
, and
K.
Moffat
,
Science
279
,
1946
(
1998
).
15.
R.
Kort
,
H.
Vonk
,
X.
Xu
,
W. D.
Hoff
,
W.
Crielaard
, and
K. J.
Hellingwerf
,
FEBS Lett.
382
,
73
(
1996
).
16.
D. S.
Larsen
and
R.
van Grondelle
,
ChemPhysChem
6
,
828
(
2005
).
17.
P.
Changenet-Barret
,
A.
Espagne
,
P.
Plaza
,
K. J.
Hellingwerf
, and
M. M.
Martin
,
New J. Chem.
29
,
527
(
2005
).
18.
J. A.
Kyndt
,
T. E.
Meyer
, and
M. A.
Cusanovich
,
Photochem. Photobiol. Sci.
3
,
519
(
2004
).
19.
N.
Mataga
,
H.
Chosrowjan
, and
S.
Taniguchi
,
J. Photochem. Photobiol. C
5
,
155
(
2004
).
20.
M. A.
Cusanovich
and
T. E.
Meyer
,
Biochemistry
42
,
4759
(
2003
).
21.
Y. O.
Jung
,
J. H.
Lee
,
J.
Kim
,
M.
Schmidt
,
K.
Moffat
,
V.
Šrajer
, and
H.
Ihee
,
Nat. Chem.
5
,
212
(
2013
).
22.
F.
Schotte
,
H. S.
Cho
,
V. R. I.
Kaila
,
H.
Kamikubo
,
N.
Dashdorj
,
E. R.
Henry
,
T. J.
Graber
,
R.
Henning
,
M.
Wulff
,
G.
Hummer
,
M.
Kataoka
, and
P. A.
Anfinrud
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
19256
(
2012
).
23.
M.
Creelman
,
M.
Kumauchi
,
W. D.
Hoff
, and
R. A.
Mathies
,
J. Phys. Chem. B
118
,
659
(
2014
).
24.
L.
Mendonça
,
F.
Hache
,
P.
Changenet-Barret
,
P.
Plaza
,
H.
Chosrowjan
,
S.
Taniguchi
, and
Y.
Imamoto
,
J. Am. Chem. Soc.
135
,
14637
(
2013
).
25.
P.
Changenet-Barret
,
C.
Loukou
,
C.
Ley
,
F.
Lacombat
,
P.
Plaza
,
J.-M.
Mallet
, and
M. M.
Martin
,
Phys. Chem. Chem. Phys.
12
,
13715
(
2010
).
26.
P.
Changenet-Barret
,
P.
Plaza
,
M. M.
Martin
,
H.
Chosrowjan
,
S.
Taniguchi
,
N.
Mataga
,
Y.
Imamoto
, and
M.
Kataoka
,
J. Phys. Chem. C
113
,
11605
(
2009
).
27.
P.
Changenet-Barret
,
P.
Plaza
,
M. M.
Martin
,
H.
Chosrowjan
,
S.
Taniguchi
,
N.
Mataga
,
Y.
Imamoto
, and
M.
Kataoka
,
Chem. Phys. Lett.
434
,
320
(
2007
).
28.
L.
Wilderen
,
M.
Horst
,
I.
Stokkum
,
K. J.
Hellingwerf
,
R.
van Grondelle
, and
M. L.
Groot
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
15050
(
2006
).
29.
H.
El-Gezawy
,
W.
Rettig
,
A.
Danel
, and
G.
Jonusauskas
,
J. Phys. Chem. B
109
,
18699
(
2005
).
30.
P.
Changenet-Barret
,
A.
Espagne
,
S.
Charier
,
J.-B.
Baudin
,
L.
Jullien
,
P.
Plaza
,
K. J.
Hellingwerf
, and
M. M.
Martin
,
Photochem. Photobiol. Sci.
3
,
823
(
2004
).
31.
M.
Boggio-Pasqua
,
C. F.
Burmeister
,
M.
Robb
, and
G.
Groenhof
,
Phys. Chem. Chem. Phys.
14
,
7912
(
2012
).
32.
M.
Boggio-Pasqua
and
G.
Groenhof
,
J. Phys. Chem. B
115
,
7021
(
2011
).
33.
E. V.
Gromov
,
I.
Burghardt
,
H.
Köppel
, and
L. S.
Cederbaum
,
J. Photochem. Photobiol. A
234
,
123
(
2012
).
34.
E. V.
Gromov
,
I.
Burghardt
,
H.
Köppel
, and
L. S.
Cederbaum
,
J. Phys. Chem. A
115
,
9237
(
2011
).
35.
Y.
Wang
and
H.
Li
,
J. Chem. Phys.
133
,
034108
(
2010
).
36.
P. B.
Coto
,
D.
Roca-Sanjuán
,
L.
Serrano-Andrés
,
A.
Martín-Pendás
,
S.
Martí
, and
J.
Andrés
,
J. Chem. Theory Comput.
5
,
3032
(
2009
).
37.
M.
Boggio-Pasqua
,
M. A.
Robb
, and
G.
Groenhof
,
J. Am. Chem. Soc.
131
,
13580
(
2009
).
38.
A.
Virshup
,
C.
Punwong
,
T. V.
Pogorelov
,
B. A.
Lindquist
,
C.
Ko
, and
T. J.
Martínez
,
J. Phys. Chem. B
113
,
3280
(
2009
).
39.
G.
Groenhof
,
L. V.
Schäfer
,
M.
Boggio-Pasqua
,
H.
Grubmüller
, and
M. A.
Robb
,
J. Am. Chem. Soc.
130
,
3250
(
2008
).
40.
C.
Ko
,
A. M.
Virshup
, and
T. J.
Martínez
,
Chem. Phys. Lett.
460
,
272
(
2008
).
41.
E. V.
Gromov
,
I.
Burghardt
,
J. T.
Hynes
,
H.
Köppel
, and
L. S.
Cederbaum
,
J. Photochem. Photobiol. A
190
,
241
(
2007
).
42.
G.
Groenhof
,
M.
Bouxin-Cademartory
,
B.
Hess
,
S. P.
de Visser
,
H. J. C.
Berendsen
,
M.
Olivucci
,
A. E.
Mark
, and
M. A.
Robb
,
J. Am. Chem. Soc.
126
,
4228
(
2004
).
43.
S.
Naseem
,
A. D.
Laurent
,
E. C.
Carroll
,
M.
Vengris
,
M.
Kumauchi
,
W. D.
Hoff
,
A. I.
Krylov
, and
D. S.
Larsen
,
J. Photochem. Photobiol. A
270
,
43
(
2013
).
44.
P.
Changenet-Barret
,
F.
Lacombat
, and
P.
Plaza
,
J. Photochem. Photobiol. A
234
,
171
(
2012
).
45.
A.
Espagne
,
D. H.
Paik
,
P.
Changenet-Barret
,
P.
Plaza
,
M. M.
Martin
, and
A. H.
Zewail
,
Photochem. Photobiol. Sci.
6
,
780
(
2007
).
46.
A.
Espagne
,
P.
Changenet-Barret
,
J.
Baudin
,
P.
Plaza
, and
M. M.
Martin
,
J. Photochem. Photobiol. A
185
,
245
(
2007
).
47.
A.
Espagne
,
P.
Changenet-Barret
,
P.
Plaza
, and
M. M.
Martin
,
J. Phys. Chem. A
110
,
3393
(
2006
).
48.
A. D.
Stahl
,
M.
Hospes
,
K.
Singhal
,
I.
van Stokkum
,
R.
van Grondelle
,
M. L.
Groot
, and
K. J.
Hellingwerf
,
Biophys. J.
101
,
1184
(
2011
).
49.
F.
Knoch
,
D.
Morozov
,
M.
Boggio-Pasqua
, and
G.
Groenhof
,
Comput. Theor. Chem.
1040–1041
,
120
(
2014
).
50.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
Chem. Phys. Lett.
243
,
409
(
1995
).
51.
E. V.
Gromov
,
I.
Burghardt
,
H.
Köppel
, and
L. S.
Cederbaum
,
J. Am. Chem. Soc.
129
,
6798
(
2007
).
52.
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
,
J. Chem. Phys.
83
,
735
(
1985
).
53.
E. V.
Gromov
,
A. B.
Trofimov
,
F.
Gatti
, and
H.
Köppel
,
J. Chem. Phys.
133
,
164309
(
2010
).
54.
D.
Shemesh
,
C.
Hättig
, and
W.
Domcke
,
Chem. Phys. Lett.
482
,
38
(
2009
).
55.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
56.
H. O. K.
Eichkorn
,
O.
Treutler
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
240
,
283
(
1995
).
57.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
58.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
59.
See supplementary material at http://dx.doi.org/10.1063/1.4903174 for (i) the discussion on the four lowest excited states of the Chr·2H2O chromophore species (Sec. SI) and for (ii) information on the stationary points found on the S1 PES of the Chr·2H2O complexes considered in this work (Sec. SII).
60.
To explain the difficulty in obtaining the α-REP on the S1 PES of the pCM (bare) chromophore, it is first worth noting that the excited states of all bare chromophores under consideration are autoionizing (metastable with respect to electron detachment) as they lie above the corresponding ionization threshold (see more details in Ref. 41). In practice, this leads to the appearance of low-lying excited states that “represent” the ionization continuum. In the case of the pCM chromophore, one of those continuum-like states lies close to the target S1 state and can “swap” with it (i.e., becomes S1) at certain chromophore's geometries. The latter makes the calculation of the points of REP a formidable task as it is not possible to account for the swapping of the states in the optimization procedure, which otherwise does not converge. For the other bare chromophores under consideration the above problem does not occur, presumably due to a larger energy gap between S1 and the continuum-like states. Note that the formation of the H-bonds in the Chr·2H2O complexes increases the ionization threshold, making the S1 state stable against electron detachment.
61.
E. V.
Gromov
,
I.
Burghardt
,
H.
Köppel
, and
L. S.
Cederbaum
,
J. Phys. Chem. A
109
,
4623
(
2005
).
62.
E. V.
Gromov
, “
Excited state dynamics of the photoactive yellow protein (PYP) chromophore
” (unpublished).
63.
L.
Freund
and
M.
Klessinger
,
Int. J. Quantum Chem.
70
,
1023
(
1998
).
64.
A.
Espagne
,
D. H.
Paik
,
P.
Changenet-Barret
,
M. M.
Martin
, and
A. H.
Zewail
,
ChemPhysChem
7
,
1717
(
2006
).
65.
E. J. M.
Leenders
,
J. V.
Vondele
,
P. G.
Bolhuis
, and
E. J.
Meijer
,
J. Phys. Chem. B
111
,
13591
(
2007
).
66.
P.-D.
Coureux
,
Z. P.
Fan
,
V.
Stojanoff
, and
U. K.
Genick
,
Structure
16
,
863
(
2008
).
67.
J.
Rajput
,
D. B.
Rahbek
,
G.
Aravind
, and
L. H.
Andersen
,
Biophys. J.
98
,
488
(
2010
).

Supplementary Material

You do not currently have access to this content.