The existence of intervalence charge transfer (IVCT) luminescence is reported. It is shown that the so called anomalous luminescence of Ce-doped elpasolite Cs2LiLuCl6, which is characterized mainly by a very large Stokes shift and a very large band width, corresponds to an IVCT emission that takes place in Ce3+–Ce4+ pairs, from the 5deg orbital of Ce3+ to 4f orbitals of Ce4+. Its Stokes shift is the sum of the large reorganization energies of the Ce4+ and Ce3+ centers formed after the fixed-nuclei electron transfer and it is equal to the energy of the IVCT absorption commonly found in mixed-valence compounds, which is predicted to exist in this material and to be slightly larger than 10 000 cm−1. The large band width is the consequence of the large offset between the minima of the Ce3+–Ce4+ and Ce4+–Ce3+ pairs along the electron transfer reaction coordinate. This offset is approximately

$2\sqrt{3}$
23 times the difference of Ce–Cl equilibrium distances in the Ce3+ and Ce4+ centers. It is shown that the energies of the peaks and the widths of IVCT absorption and emission bands can be calculated ab initio with reasonable accuracy from diabatic energy surfaces of the ground and excited states and that these can be obtained, in turn, from independent calculations on the donor and acceptor active centers. We obtained the energies of the Ce3+ and Ce4+ active centers of Ce-doped Cs2LiLuCl6 by means of state-of-the-art wave-function-theory spin-orbit coupling relativistic calculations on the donor cluster (CeCl6Li6Cs8)11+ and the acceptor cluster (CeCl6Li6Cs8)12+ embedded in a quantum mechanical embedding potential of the host. The calculations provide interpretations of unexplained experimental observations as due to higher energy IVCT absorptions, and allow to reinterpret others. The existence of another IVCT emission of lower energy, at around 14 000-16 000 cm−1 less than the 5dt2g emission, is also predicted.

1.
J. W.
Verhoeven
,
Pure Appl. Chem.
68
,
2223
(
1996
).
2.
The term IVCT is used sometimes for MMCT between non-equivalent metal ions and also for electron transfer processes not involving metals; here, we will adopt the conventional meaning and we will call IVCT only to the homonuclear, symmetric MMCT.
3.
R. A.
Marcus
,
Annu. Rev. Phys. Chem.
15
,
155
(
1964
).
4.
G. C.
Allen
and
N. S.
Hush
,
Prog. Inorg. Chem.
8
,
357
(
1967
).
5.
M.
Robin
and
P.
Day
,
Adv. Inorg. Chem. Radiochem.
10
,
247
(
1968
).
6.
7.
N. S.
Hush
,
Prog. Inorg. Chem.
8
,
391
(
1967
).
8.
N. S.
Hush
,
Coord. Chem. Rev.
64
,
135
(
1985
).
9.
S. B.
Piepho
,
E. R.
Krausz
, and
P. N.
Schatz
,
J. Am. Chem. Soc.
100
,
2996
(
1975
).
10.
G.
Blasse
,
Struct. Bond.
76
,
153
(
1991
).
11.
P.
Boutinaud
,
R.
Mahiou
,
E.
Cavalli
, and
M.
Bettinelli
,
J. Lumin.
122–123
,
430
(
2007
).
12.
W.
van Schaik
,
S.
Lizzo
,
W.
Smit
, and
G.
Blasse
,
J. Electrochem. Soc.
140
,
216
(
1993
).
13.
Z.
Barandiarán
and
L.
Seijo
, “
Intervalence charge transfer luminescence: Interplay between anomalous and 5d-4f emissions in Yb-doped fluorite-type crystals
,”
J. Chem. Phys.
(in press).
14.
A.
Bessière
,
P.
Dorenbos
,
C.
van Eijk
,
K.
Krämer
,
H.
Güdel
, and
A.
Galtayries
,
J. Lumin.
117
,
187
(
2006
).
15.
P.
Dorenbos
,
E.
van Loef
,
C.
van Eijk
,
K.
Krämer
, and
H.
Güdel
,
Phys. Rev. B
68
,
125108
(
2003
).
16.
A.
Bessière
,
P.
Dorenbos
,
C.
van Eijk
,
L.
Pidol
,
K.
Krämer
, and
H.
Güdel
,
J. Phys.: Condens. Matter
16
,
1887
(
2004
).
17.
C.-K.
Duan
,
P. A.
Tanner
,
A.
Meijerink
, and
V.
Babin
,
J. Phys.: Condens. Matter
21
,
395501
(
2009
).
18.
C.-K.
Duan
,
P. A.
Tanner
,
V.
Makhov
, and
N.
Khaidukov
,
J. Phys. Chem. A
115
,
8870
(
2011
).
19.
R.
McWeeny
,
Proc. R. Soc. London, Ser. A
253
,
242
(
1959
).
20.
R.
McWeeny
,
Methods of Molecular Quantum Mechanics
, 2nd ed. (
Academic Press
,
London
,
1989
).
21.
G.
Karlström
,
R.
Lindh
,
P. A.
Malmqvist
,
B. O.
Roos
,
U.
Ryde
,
V.
Veryazov
,
P. O.
Widmark
,
M.
Cossi
,
B.
Schimmelpfennig
,
P.
Neogrady
, and
L.
Seijo
,
Comput. Mater. Sci.
28
,
222
(
2003
).
22.
M.
Douglas
and
N. M.
Kroll
,
Ann. Phys. (N.Y.)
82
,
89
(
1974
).
23.
24.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
25.
P. E. M.
Siegbahn
,
A.
Heiberg
,
B. O.
Roos
, and
B.
Levy
,
Phys. Scr.
21
,
323
(
1980
).
26.
P. E. M.
Siegbahn
,
A.
Heiberg
,
J.
Almlöf
, and
B. O.
Roos
,
J. Chem. Phys.
74
,
2384
(
1981
).
27.
K.
Andersson
,
P.-A.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
,
5483
(
1990
).
28.
K.
Andersson
,
P.-A.
Malmqvist
, and
B. O.
Roos
,
J. Chem. Phys.
96
,
1218
(
1992
).
29.
A.
Zaitsevskii
and
J.-P.
Malrieu
,
Chem. Phys. Lett.
233
,
597
(
1995
).
30.
J.
Finley
,
P.-A.
Malmqvist
,
B. O.
Roos
, and
L.
Serrano-Andrés
,
Chem. Phys. Lett.
288
,
299
(
1998
).
31.
G.
Ghigo
,
B. O.
Roos
, and
P.-A.
Malmqvist
,
Chem. Phys. Lett.
396
,
142
(
2004
).
32.
B. A.
Hess
,
C. M.
Marian
,
U.
Wahlgren
, and
O.
Gropen
,
Chem. Phys. Lett.
365–371
,
365
(
1996
).
33.
R.
Llusar
,
M.
Casarrubios
,
Z.
Barandiarán
, and
L.
Seijo
,
J. Chem. Phys.
105
,
5321
(
1996
).
34.
P. A.
Malmqvist
,
B. O.
Roos
, and
B.
Schimmelpfennig
,
Chem. Phys. Lett.
357
,
230
(
2002
).
35.
J.
Paulovic
,
T.
Nakajima
,
K.
Hirao
,
R.
Lindh
, and
P.-A.
Malmqvist
,
J. Chem. Phys.
119
,
798
(
2003
).
36.
B. O.
Roos
,
R.
Lindh
,
P. A.
Malmqvist
,
V.
Veryazov
, and
P. O.
Widmark
,
J. Chem. Phys.
112
,
11431
(
2008
).
37.
B. O.
Roos
,
R.
Lindh
,
P. A.
Malmqvist
,
V.
Veryazov
, and
P. O.
Widmark
,
J. Phys. Chem. A
108
,
2851
(
2005
).
38.
B. O.
Roos
,
V.
Veryazov
, and
P. O.
Widmark
,
Theor. Chim. Acta
111
,
345
(
2003
).
39.
S.
Huzinaga
,
L.
Seijo
,
Z.
Barandiarán
, and
M.
Klobukowski
,
J. Chem. Phys.
86
,
2132
(
1987
).
40.
Z.
Barandiarán
and
L.
Seijo
,
J. Chem. Phys.
89
,
5739
(
1988
).
41.
A.
Gellé
and
M.-B.
Lepetit
,
J. Chem. Phys.
128
,
244716
(
2008
).
42.
43.
G.
Meyer
,
S. J.
Hwu
, and
J. D.
Corbett
,
Z. Anorg. Allg. Chem.
535
,
208
(
1986
).
44.
L.
Seijo
and
Z.
Barandiarán
,
J. Chem. Phys.
94
,
8158
(
1991
).
45.
Detailed embedding AIMP data libraries in electronic format are available from the authors upon request or directly at the address http://www.uam.es/quimica/aimp/Data/AIMPLibs.html. See also Ref. 21.
46.
See supplementary material at http://dx.doi.org/10.1063/1.4902384 for oscillator strengths, horizontal offsets, IVCT energy diagrams, and additional AIMP data.
47.
P. A.
Tanner
,
C. S. K.
Mak
,
N. M.
Edelstein
,
K. M.
Murdoch
,
G.
Liu
,
J.
Huang
,
L.
Seijo
, and
Z.
Barandiarán
,
J. Am. Chem. Soc.
125
,
13225
(
2003
).
48.
B.
Ordejón
,
L.
Seijo
, and
Z.
Barandiarán
,
J. Chem. Phys.
126
,
194712
(
2007
).
49.
G.
Sánchez-Sanz
,
L.
Seijo
, and
Z.
Barandiarán
,
J. Chem. Phys.
133
,
114509
(
2010
).
50.
E. J.
Heller
,
J. Chem. Phys.
62
,
1544
(
1975
).
51.
E. J.
Heller
,
Acc. Chem. Res.
14
,
368
(
1981
).
52.
J. I.
Zink
and
K. S.
Shin
,
Advances in Photochemistry
(
Wiley
,
New York
,
1991
), Vol.
16
, pp.
119
214
.
53.
D. S.
McClure
and
C.
Pédrini
,
Phys. Rev. B
32
,
8465
(
1985
).
54.
B.
Moine
,
B.
Courtois
, and
C.
Pédrini
,
J. Phys. France
50
,
2105
(
1989
).
55.
P.
Dorenbos
,
J. Phys.: Condens. Matter
15
,
2645
(
2003
).
56.
J.
Gracia
,
L.
Seijo
,
Z.
Barandiarán
,
D.
Curulla
,
H.
Niemansverdriet
, and
W.
van Gennip
,
J. Lumin.
128
,
1248
(
2008
).
57.
I. B.
Bersuker
,
The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry
(
Plenum Press
,
New York
,
1984
).

Supplementary Material

You do not currently have access to this content.