Molecular dynamics simulations and density functional theory calculations have been used to demonstrate the possibility of preserving high spin states of the magnetic cores within Ni-based core-shell bimetallic nanoalloys over a wide range of temperatures. We show that, unlike the case of Ni–Al clusters, Ni–Ag clusters preserve high spin states (up to 8 μB in case of Ni13Ag32 cluster) due to small hybridization between the electronic levels of two species. Intriguingly, such clusters are also able to maintain geometrical and electronic integrity of their cores at temperatures up to 1000 K (e.g., for Ni7Ag27 cluster). Furthermore, we also show the possibility of creating ordered arrays of such magnetic clusters on a suitable support by soft-landing pre-formed clusters on the surface, without introducing much disturbance in geometrical and electronic structure of the cluster. We illustrate this approach with the example of Ni13Ag38 clusters adsorbed on the Si(111)–(7×7) surface, which, having two distinctive halves to the unit cell, acts as a selective template for cluster deposition.

1.
R.
Ferrando
,
J.
Jellinek
, and
R. L.
Johnston
,
Chem. Rev.
108
,
845
(
2008
).
2.
S.
Wei
,
Q.
Wang
,
J.
Zhu
,
L.
Sun
,
H.
Lin
, and
Z.
Guo
,
Nanoscale
3
,
4474
(
2011
).
3.
J.
Wang
and
X. C.
Zeng
, “
Core-shell magnetic nanoclusters
,” in
Nanoscale Magnetic Materials and Applications
, edited by
J. P.
Liu
,
E.
Fullerton
,
O.
Gutfleisch
, and
D. J.
Sellmyer
(
Springer
,
Boston
,
2009
).
4.
Y.-W.
Jun
,
J.-S.
Choi
, and
J.
Cheon
,
Chem. Commun.
12
,
1203
(
2007
).
5.
I. S.
Lee
,
N.
Lee
,
J.
Park
,
B. H.
Kim
,
Y.-W.
Yi
,
T.
Kim
,
T. K.
Kim
,
I. H.
Lee
,
S. R.
Paik
, and
T.
Hyeon
,
J. Chem. Am. Soc.
128
,
10658
(
2006
).
6.
J.-H.
Lee
,
Y.-W.
Jun
,
S.-I.
Yeon
,
J.-S.
Shin
, and
J.
Cheon
,
Angew. Chem. Int. Ed.
45
,
8160
(
2006
).
7.
S. G.
Grancharov
,
H.
Zeng
,
S.
Sun
,
S. X.
Wang
,
S.
O'Brien
,
C. B.
Murray
,
J. R.
Kirtley
, and
G. A.
Held
,
J. Phys. Chem. B
109
,
13030
(
2005
).
8.
D.
Chen
,
J.
Li
,
C.
Shi
,
X.
Du
,
N.
Zhao
,
J.
Sheng
, and
S.
Liu
,
Chem. Mater.
19
,
3399
(
2007
).
9.
J.
Guevara
,
A. M.
Llois
,
F.
Aguilera-Granja
, and
J. M.
Montejano-Carrizales
,
Physica B
354
,
300
(
2004
).
10.
I.
Robinson
,
S.
Zacchini
,
L. D.
Tung
,
S.
Maenosono
, and
N. T. K.
Thanh
,
Chem. Mater.
21
,
3021
(
2009
).
11.
C.
Paola
and
F.
Baletto
,
Eur. Phys. J. D
67
,
1
(
2013
).
12.
M. D.
Deshpande
,
R.
Pandey
,
M. A.
Blanco
, and
A.
Khalkar
,
J. Nanopart. Res.
12
,
1129
(
2010
).
13.
B.
Li
,
X.
Ren
,
X.
Zhang
,
Z.
Ma
,
J.
Gu
, and
G.
Li
,
World J. Cond. Mat. Phys.
2
,
267
(
2012
).
14.
M.
Wang
,
X.
Huang
,
Z.
Du
, and
Y.
Li
,
Chem. Phys. Lett.
480
,
258
(
2009
).
15.
J.-Q.
Wen
,
Z.-Y.
Jiang
,
J.-Q.
Li
,
L.-K.
Cao
, and
S.-Y.
Chu
,
Int. J. Quant. Chem.
110
,
1368
(
2010
).
16.
C.-C.
Lee
and
D.-H.
Chen
,
Nanotechnology
17
,
3094
(
2006
).
17.
F.
Baletto
,
C.
Mottet
,
A.
Rapallo
,
G.
Rossi
, and
R.
Ferrando
,
Surf. Sci.
566
,
192
(
2004
).
18.
M.
Harb
,
F.
Rabilloud
, and
D.
Simon
,
Phys. Chem. Chem. Phys.
12
,
4246
(
2010
).
19.
F.
Calvo
,
A.
Fortunelli
,
F.
Negreiros
, and
D. J.
Wales
,
J. Chem. Phys.
139
,
111102
(
2013
).
20.
M.
Harb
,
F.
Rabilloud
, and
D.
Simon
,
J. Phys. Chem. A
111
,
7726
(
2007
).
21.
M.
Molayem
,
V. G.
Grigoryan
, and
M.
Springborg
,
J. Phys. Chem. C
115
,
7179
(
2011
).
22.
G.
Rossi
,
A.
Rapallo
,
C.
Mottet
,
A.
Fortunelli
,
F.
Baletto
, and
R.
Ferrando
,
Phys. Rev. Lett.
93
,
105503
(
2004
).
23.
A.
Rapallo
,
G.
Rossi
,
R.
Ferrando
,
A.
Fortunelli
,
B. C.
Curley
,
L. D.
Lloyd
,
G. M.
Tarbuck
, and
R. L.
Johnston
,
J. Chem. Phys.
122
,
194308
(
2005
).
24.
M.
Schmidt
and
H.
Haberland
,
C. R. Phys.
3
,
327
(
2002
).
25.
A.
Aguado
and
M. F.
Jarrold
,
Ann. Rev. Phys. Chem.
62
,
151
(
2011
).
26.
M. S.
Bailey
,
N. T.
Wilson
,
C.
Roberts
, and
R. L.
Johnston
,
Eur. Phys. J. D
25
,
41
(
2003
).
27.
Y. G.
Chushak
and
L. S.
Bartell
,
J. Phys. Chem. B
107
,
3747
(
2003
).
28.
N.
Jakse
,
O.
Le Bacq
, and
A.
Pasturel
,
J. Chem. Phys.
123
,
104508
(
2005
).
29.
N. T.
Wilson
,
M. S.
Bailey
, and
R. L.
Johnston
,
Inorg. Chim. Acta
359
,
3649
(
2006
).
30.
J.
Tang
and
J.
Yang
,
J. Nanopart. Res.
15
,
1
(
2013
).
31.
F.
Calvo
,
E.
Cottancin
, and
M.
Broyer
,
Phys. Rev. B
77
,
121406
(
2008
).
32.
Z.
Kuntová
,
G.
Rossi
, and
R.
Ferrando
,
Phys. Rev. B
77
,
205431
(
2008
).
33.
C.
Mottet
,
G.
Rossi
,
F.
Baletto
, and
R.
Ferrando
,
Phys. Rev. Lett.
95
,
035501
(
2005
).
34.
H. Y.
Oderji
,
H.
Behnejad
,
R.
Ferrando
, and
H.
Ding
,
RSC Adv.
3
,
21981
(
2013
).
35.
W.
Harbich
, “
Collision of clusters with surfaces
,” in
Metal Clusters at Surfaces
, edited by
K.-H.
Meiwes-Broer
(
Springer
,
Berlin
,
2000
).
36.
S. A.
Claridge
,
A. W.
Castleman
 Jr.
,
S. N.
Khanna
,
C. B.
Murray
,
A.
Sen
, and
P. S.
Weiss
,
ACS Nano
3
,
244
(
2009
).
37.
M.
Meilikhov
,
K.
Yusenko
,
D.
Esken
,
S.
Turner
,
G.
Van Tendeloo
, and
R. A.
Fischer
,
Eur. J. Inorg. Chem.
24
,
3701
(
2010
).
38.
H. H.
Park
,
K.
Woo
, and
J.-P.
Ahn
,
Sci. Rep.
3
,
1497
(
2013
).
39.
M. F.
Horstemeyer
, “
Multiscale modeling: A review
,” in
Practical Aspects of Computational Chemistry
, edited by
J.
Leszczynski
and
M. K.
Shukla
(
Springer
,
Berlin
,
2010
).
40.
D. J.
Wales
and
J. P. K.
Doye
,
J. Phys. Chem. A
101
,
5111
(
1997
).
41.
D. J.
Wales
,
J. P. K.
Doye
,
M. A.
Miller
,
P. N.
Mortenson
, and
T. R.
Walsh
,
Adv. Chem. Phys.
115
,
1
(
2000
).
42.
T. V.
Bogdan
,
D. J.
Wales
, and
F.
Calvo
,
J. Chem. Phys.
124
,
044102
(
2006
).
43.
R. P.
Gupta
,
Phys. Rev. B
23
,
6265
(
1981
).
44.
R. L.
Johnston
,
Dalton Trans.
22
,
4193
(
2003
).
45.
P. J.
Hsu
and
S. K.
Lai
,
J. Chem. Phys.
124
,
044711
(
2006
).
46.
P. J.
Hsu
,
J. S.
Luo
,
S. K.
Lai
,
J. F.
Wax
, and
J.-L.
Bretonnet
,
J. Chem. Phys.
129
,
194302
(
2008
).
47.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. J.
Probert
,
K.
Refson
, and
M. C.
Payne
,
Z. Kristall.
220
,
567
(
2005
).
48.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
49.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
50.
J.
Nocedal
and
S. J.
Wright
,
Numerical Optimization
(
Springer
,
New York
,
2006
).
51.
I. T.
Todorov
,
W.
Smith
,
K.
Trachenko
, and
M. T.
Dove
,
J. Mater. Chem.
16
,
1911
(
2006
).
52.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
,
J. Chem. Phys.
76
,
637
(
1982
).
53.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
54.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
55.
R. H.
Swendsen
and
J. S.
Wang
,
Phys. Rev. Lett.
57
,
2607
(
1986
).
56.
D. J.
Earl
and
M. W.
Deem
,
Phys. Chem. Chem. Phys.
7
,
3910
(
2005
).
57.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
,
J. Comput. Chem.
13
,
1021
(
1992
).
58.
J. D.
Chodera
,
W. C.
Swope
,
J. W.
Pitera
,
C.
Seok
, and
K. A.
Dill
,
J. Chem. Theor. Comput.
3
,
26
(
2007
).
59.
J. P. K.
Doye
and
L.
Meyer
,
Phys. Rev. Lett.
95
,
063401
(
2005
).
60.
See supplemental material at http://dx.doi.org/10.1063/1.4902541 for further details on the procedure of assessing the relative stabilities of the clusters, detailed discussion of the electronic structure of Ni13Al48 cluster, as well as full analysis of the vibrational spectra of Ni13Ag38 at different temperatures.
61.
A.
Kulkarni
,
R. J.
Lobo-Lapidus
, and
B. C.
Gates
,
Chem. Commun.
46
,
5997
(
2010
).
62.
F.
Aguilera-Granja
,
S.
Bouarab
,
M. J.
López
,
A.
Vega
,
J. M.
Montejano-Carrizales
,
M. P.
Iñiguez
, and
J. A.
Alonso
,
Phys. Rev. B
57
,
12469
(
1998
).
63.
V. G.
Grigoryan
and
M.
Springborg
,
Phys. Rev. B
70
,
205415
(
2004
).
64.
O. S.
Alexeev
and
B. C.
Gates
,
Ind. Eng. Chem. Res.
42
,
1571
(
2003
).
65.
U.
Heiz
and
E. L.
Bullock
,
J. Mater. Chem.
14
,
564
(
2004
).
66.
D. W.
Yuan
,
C.
Liu
, and
Z. R.
Liu
,
Phys. Lett. A
378
,
408
(
2014
).
67.
Q.
Wu
,
W. L.
Eriksen
,
L. D. L.
Duchstein
,
J. M.
Christensen
,
C. D.
Damsgaard
,
J. B.
Wagner
,
B.
Temel
,
J.-D.
Grunwaldt
, and
A. D.
Jensen
,
Catal. Sci. Technol.
4
,
378
(
2014
).
68.
R.
Ismail
,
R.
Ferrando
, and
R. L.
Johnston
,
J. Phys. Chem. C
117
,
293
(
2013
).
69.
D.
Çakir
and
O.
Gülseren
,
J. Phys. Chem. C
116
,
5735
(
2012
).
70.
S.
Nigam
and
C.
Majumder
,
J. Phys. Chem. C
116
,
25594
(
2012
).
71.
M.
Moseler
,
H.
Häkkinen
, and
U.
Landman
,
Phys. Rev. Lett.
89
,
176103
(
2002
).
72.
U.
Martinez
,
G.
Pacchioni
, and
F.
Illas
,
J. Chem. Phys.
130
,
184711
(
2009
).
73.
P.
Murugan
,
V.
Kumar
, and
Y.
Kawazoe
,
Phys. Rev. B
73
,
075401
(
2006
).
74.
S. Y.
Tong
,
H.
Huang
,
C. M.
Wei
,
W. E.
Packard
,
F. K.
Men
,
G.
Glander
, and
M. B.
Webb
,
J. Vac. Sci. Technol. A
6
,
615
(
1988
).
75.
K. D.
Brommer
,
M.
Needels
,
B.
Larson
, and
J. D.
Joannopoulos
,
Phys. Rev. Lett.
68
,
1355
(
1992
).
76.
C.
Zhang
,
G.
Chen
,
K.
Wang
,
H.
Yang
,
T.
Su
,
C. T.
Chan
,
M. M. T.
Loy
, and
X.
Xiao
,
Phys. Rev. Lett.
94
,
176104
(
2005
).
77.
X.
Jiang
,
Z.
Xie
,
M.
Shimojo
, and
K.-I.
Tanaka
,
J. Chem. Phys.
127
,
144705
(
2007
).
78.
K. D.
Brommer
,
M.
Galván
,
A.
Dal Pino
 Jr.
, and
J. D.
Joannopoulos
,
Surf. Sci.
314
,
57
(
1994
).
79.
K.
Cho
and
E.
Kaxiras
,
Surf. Sci.
396
,
L261
(
1998
).
80.
M.
D'Angelo
,
K.
Takase
,
N.
Miyata
,
T.
Hirahara
,
S.
Hasegawa
,
A.
Nishide
,
M.
Ogawa
, and
I.
Matsuda
,
Phys. Rev. B
79
,
035318
(
2009
).

Supplementary Material

You do not currently have access to this content.