We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

1.
C. N.
Likos
,
Phys. Rep.
348
,
267
(
2001
).
2.
J.-P.
Hansen
, and
H.
Löwen
, in
Bridging Time Scales: Molecular Simulations for the Next Decade
,
Lecture Notes in Physics
, edited by
P.
Nielaba
,
M.
Mareschal
, and
G.
Ciccotti
(
Springer
,
Berlin/Heidelberg
,
2002
), Vol.
605
, pp.
167
196
.
3.
Z.
Wu
,
Q.
Cui
, and
A.
Yethiraj
,
J. Phys. Chem. B
114
,
10524
(
2010
).
4.
I.
Kalcher
,
J. C. F.
Schulz
, and
J.
Dzubiella
,
Phys. Rev. Lett.
104
,
097802
(
2010
).
5.
J.
Baschnagel
,
K.
Binder
,
W.
Paul
,
M.
Laso
,
U. W.
Suter
,
I.
Batoulis
,
W.
Jilge
, and
T.
Bürger
,
J. Chem. Phys.
95
,
6014
(
1991
).
6.
S.
Izvekov
and
G. A.
Voth
,
J. Phys. Chem. B
109
,
2469
(
2005
).
7.
E.
Villa
,
A.
Balaeff
,
L.
Mahadevan
, and
K.
Schulten
,
Multiscale Model Simul.
2
,
527
(
2004
).
8.
R. D.
Groot
and
P. B.
Warren
,
J. Chem. Phys.
107
,
4423
(
1997
).
9.
S. H. L.
Klapp
,
D. J.
Diestler
, and
M.
Schoen
,
J. Phys.: Condens. Matter
16
,
7331
(
2004
).
10.
W. S.
Young
and
C. L.
Brooks
 III
,
J. Chem. Phys.
106
,
9265
(
1997
).
11.
M. K.
Ghosh
,
N.
Uddin
, and
C. H.
Choi
,
J. Phys. Chem. B
116
,
14254
(
2012
).
12.
O. I.
Obolensky
,
V. V.
Semenikhina
,
A. V.
Solov'yov
, and
W.
Greiner
,
Int. J. Quantum Chem.
107
,
1335
(
2007
).
13.
S.
Blumstengel
,
S.
Sadofev
, and
F.
Henneberger
,
New J. Phys.
10
,
065010
(
2008
).
14.
D.
Andrienko
,
V.
Marcon
, and
K.
Kremer
,
J. Chem. Phys.
125
,
124902
(
2006
).
15.
S.
Chandrasekhar
,
Liq. Cryst.
14
,
3
(
1993
).
16.
R. J.
Bushby
and
O. R.
Lozman
,
Curr. Opin. Colloid Interface Sci.
7
,
343
(
2002
).
17.
O. A.
von Lilienfeld
and
D.
Andrienko
,
J. Chem. Phys.
124
,
054307
(
2006
).
18.
M.
Babadi
,
R.
Everaers
, and
M. R.
Ejtehadi
,
J. Chem. Phys.
124
,
174708
(
2006
).
19.
R.
Everaers
and
M. R.
Ejtehadi
,
Phys. Rev. E
67
,
041710
(
2003
).
20.
J. M.
Robertson
and
J.
White
,
Nature
154
,
605
(
1944
).
21.
I.
Fedorov
,
Y.
Zhuravlev
, and
V.
Berveno
,
Phys. Status Solidi B
249
,
1438
(
2012
).
22.
J. G.
Kirkwood
,
J. Chem. Phys.
3
,
300
(
1935
).
23.
H.
Löwen
and
G.
Kramposthuber
,
Europhys. Lett.
23
,
673
(
1993
).
24.
F.
Ercolessi
and
J. B.
Adams
,
Europhys. Lett.
26
,
583
(
1994
).
25.
S.
Izvekov
,
M.
Parrinello
,
C. J.
Burnham
, and
G. A.
Voth
,
J. Chem. Phys.
120
,
10896
(
2004
).
26.
R. L.
McGreevy
and
L.
Pusztai
,
Mol. Simul.
1
,
359
(
1988
).
27.
W.
Tschöp
,
K.
Kremer
,
J.
Batoulis
,
T.
Bürger
, and
O.
Hahn
,
Acta Polym.
49
,
61
(
1998
).
28.
W.
Tschöp
,
K.
Kremer
,
O.
Hahn
,
J.
Batoulis
, and
T.
Bürger
,
Acta Polym.
49
,
75
(
1998
).
29.
J. R.
Silbermann
,
S. H. L.
Klapp
,
M.
Schoen
,
N.
Chennamsetty
,
H.
Bock
, and
K. E.
Gubbins
,
J. Chem. Phys.
124
,
074105
(
2006
).
30.
L.
Li
,
L.
Harnau
,
S.
Rosenfeldt
, and
M.
Ballauff
,
Phys. Rev. E
72
,
051504
(
2005
).
31.
G. M.
Torrie
and
J. P.
Valleau
,
Chem. Phys. Lett.
28
,
578
(
1974
).
32.
G.
Torrie
and
J.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
33.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
,
J. Comput. Chem.
13
,
1011
(
1992
).
34.
B.
Roux
,
Comput. Phys. Commun.
91
,
275
(
1995
).
35.
T.
Mülders
,
P.
Krüger
,
W.
Swegat
, and
J.
Schlitter
,
J. Chem. Phys.
104
,
4869
(
1996
).
36.
S.
Izrailev
,
S.
Stepaniants
,
B.
Isralewitz
,
D.
Kosztin
,
H.
Lu
,
F.
Molnar
,
W.
Wriggers
, and
K.
Schulten
, in
Computational Molecular Dynamics: Challenges, Methods, Ideas
,
Lecture Notes in Computational Science and Engineering
, edited by
P.
Deuflhard
,
J.
Hermans
,
B.
Leimkuhler
,
A.
Mark
,
S.
Reich
, and
R.
Skeel
(
Springer
,
Berlin/Heidelberg
,
1999
), Vol.
4
, pp.
39
65
.
37.
H.
Grubmüller
,
B.
Heymann
, and
P.
Tavan
,
Science
271
,
997
(
1996
).
38.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
,
J. Comput. Chem.
25
,
1157
(
2004
).
39.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
,
J. Comput. Chem.
26
,
1701
(
2005
).
40.
It was used due to a fatal bug in the previous built.
41.
R. M.
Neumann
,
Am. J. Phys.
48
,
354
(
1980
).
42.
E.
Carter
,
G.
Ciccotti
,
J. T.
Hynes
, and
R.
Kapral
,
Chem. Phys. Lett.
156
,
472
(
1989
).
43.
M.
Mezei
,
J. Comput. Phys.
68
,
237
(
1987
).
44.
T.
Baştuğ
,
P.-C.
Chen
,
S. M.
Patra
, and
S.
Kuyucak
,
J. Chem. Phys.
128
,
155104
(
2008
).
45.
J. G.
Gay
and
B. J.
Berne
,
J. Chem. Phys.
74
,
3316
(
1981
).
46.
V. N.
Kabadi
,
Ber. Bunsenges. Phys. Chem.
90
,
327
(
1986
).
47.
F. d. J.
Guevara-Rodríguez
and
G.
Odriozola
,
J. Chem. Phys.
135
,
084508
(
2011
).
48.
A.
Stone
,
Mol. Phys.
36
,
241
(
1978
).
49.
T.
Boublík
and
M.
Díaz Peña
,
Mol. Phys.
70
,
1115
(
1990
).
50.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
51.
C.
Gray
and
K.
Gubbins
,
Theory of Molecular Fluids: I: Fundamentals
,
International Series of Monographs on Chemistry
(
Oxford University Press
,
Oxford
,
1984
).
52.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
,
Oxford Science Publications
(
Oxford University Press
,
1989
).
53.
A.
Emerson
,
G.
Luckhurst
, and
S.
Whatling
,
Mol. Phys.
82
,
113
(
1994
).
54.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. C
112
,
4061
(
2008
).
55.
M. A.
Bates
and
G. R.
Luckhurst
,
Liq. Cryst.
24
,
229
(
1998
).
56.
S.
Orlandi
,
L.
Muccioli
,
M.
Ricci
,
R.
Berardi
, and
C.
Zannoni
,
Chem. Cent. J.
1
,
15
(
2007
).
57.
P. A.
Golubkov
and
P.
Ren
,
J. Chem. Phys.
125
,
064103
(
2006
).
58.
M.
Dijkstra
,
J. P.
Hansen
, and
P.
Madden
,
Phys. Rev. Lett.
75
,
2236
(
1995
).
59.
E.
Trizac
,
L.
Bocquet
,
R.
Agra
,
J.-J.
Weis
, and
M.
Aubouy
,
J. Phys.: Condens. Matter
14
,
9339
(
2002
).
60.
C.
Haydock
,
J.
Sharp
, and
F.
Prendergast
,
Biophys. J.
57
,
1269
(
1990
).
61.
T.
Echigo
,
M.
Kimata
, and
T.
Maruoka
,
Am. Mineral.
92
,
1262
(
2007
).
You do not currently have access to this content.