In lattice models, local pressure on a surface is derived from the change in the free energy of the system due to the exclusion of a certain boundary site, while the total force on the surface can be obtained by a similar exclusion of all surface sites. In these definitions, while the total force on the surface of a lattice system matches the force measured in a continuous system, the local pressure does not. Moreover, in a lattice system, the sum of the local pressures is not equal to the total force as is required in a continuous system. The difference is caused by correlation between occupations of surface sites as well as finite displacement of surface elements used in the definition of the pressures and the force. This problem is particularly acute in the studies of entropic pressure of polymers represented by random or self-avoiding walks on a lattice. We propose a modified expression for the local pressure which satisfies the proper relation between the pressure and the total force, and show that for a single ideal polymer in the presence of scale-invariant boundaries it produces quantitatively correct values for continuous systems. The required correction to the pressure is non-local, i.e., it depends on long range correlations between contact points of the polymer and the surface.

1.
M. E.
Gurtin
,
An Introduction to Continuum Mechanics
(
Academic Press
,
London
,
1981
).
2.
R. K.
Pathria
,
Statistical Mechanics
, 2nd ed. (
Butterworth-Heinemann
,
Oxford
,
1996
).
3.
H.
Heinz
,
W.
Paul
, and
K.
Binder
,
Phys. Rev. E
72
,
066704
(
2005
).
4.
T. W.
Lion
and
R. J.
Allen
,
J. Phys.: Condens. Matter
24
,
284133
(
2012
).
5.
M.
Breidenich
,
R. R.
Netz
, and
R.
Lipowsky
,
Europhys. Lett.
49
,
431
(
2000
).
6.
T.
Bickel
,
C.
Jeppesen
, and
C. M.
Marques
,
Eur. Phys. J. E
4
,
33
(
2001
).
7.
Y.
Hammer
and
Y.
Kantor
,
Phys. Rev. E
89
,
022601
(
2014
).
8.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon Press
,
Oxford
,
1986
).
9.
E.
Eisenriegler
,
Polymers Near Surfaces
(
World Scientific
,
Singapore
,
1993
).
10.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca, NY
,
1979
).
11.
K.
Binder
and
M.
Müller
, in
Simulation Models for Polymers
, edited by
M. K.
Telyanskii
and
D. N.
Theodorou
(
Marcel Dekker
,
New York
,
2004
), Chap. 4.1, pp.
125
146
.
12.
R.
Dickman
,
J. Chem. Phys.
87
,
2246
(
1987
).
13.
I.
Jensen
,
W. G.
Dantas
,
C. M.
Marques
, and
J. F.
Stilck
,
J. Phys. A
46
,
115004
(
2013
).
14.
E. J.
Janse van Rensburg
and
T.
Prellberg
,
J. Phys. A
46
,
115202
(
2013
).
15.
F.
Gassoumov
and
E. J.
Janse van Rensburg
,
J. Stat. Mech. Theory Exp.
2013
,
P10005
.
16.
R. M.
Brum
and
J. F.
Stilck
, “
Pressure exerted by a grafted polymer: Bethe lattice solution
,” e-print arXiv:1409.6048.
17.
Y.
Wang
,
F. Y.
Hansen
,
G. H.
Peters
, and
O.
Hassager
,
J. Chem. Phys.
129
,
074904
(
2008
).
18.
Y.
Wang
,
G. H.
Peters
,
F. Y.
Hansen
, and
O.
Hassager
,
J. Chem. Phys.
128
,
124904
(
2008
).
19.
M. F.
Maghrebi
,
Y.
Kantor
, and
M.
Kardar
,
Europhys. Lett.
96
,
66002
(
2011
).
20.
M. F.
Maghrebi
,
Y.
Kantor
, and
M.
Kardar
,
Phys. Rev. E
86
,
061801
(
2012
).
21.
J.
Cardy
,
Scaling and Renormalization in Statistical Physics
(
Cambridge University Press
,
1996
).
22.
J. L.
Cardy
and
S.
Redner
,
J. Phys. A
17
,
L933
(
1984
).
23.
E. J.
Janse van Rensburg
,
J. Phys. A
42
,
323001
(
2009
).
24.
A.
Milchev
and
K.
Binder
,
Eur. Phys. J. B
3
,
477
(
1998
).
25.
H.-P.
Hsu
and
P.
Grassberger
,
J. Chem. Phys.
120
,
2034
(
2004
).
26.
I.
Teraoka
,
P.
Cifra
, and
Y.
Wang
,
Colloids Surf. A
206
,
299
(
2002
).
27.
D. I.
Dimitrov
,
A.
Milchev
,
K.
Binder
,
L. I.
Klushin
, and
A. M.
Skvortsov
,
J. Chem. Phys.
128
,
234902
(
2008
).
28.
I. S.
Ryzhik
and
I. M.
Gradshteyn
,
Table of Integrals, Series, and Products
, 7th ed. (
Academic Press
,
New York
,
2007
).
You do not currently have access to this content.