We calculate the adiabatic Potential Energy Surfaces (PESs) and the Non-Adiabatic Coupling Terms (NACTs) for the three lowest singlet states of

${\rm H}_3^+$
H3+ in hyperspherical coordinates as functions of hyperangles (θ and ϕ) for a grid of fixed values of hyperradius (1.5 ⩽ ρ ⩽ 20 bohrs) using the MRCI level of methodology employing ab initio quantum chemistry package (MOLPRO). The NACT between the ground and the first excited state translates along the seams on the θ − ϕ space, i.e., there are six Conical Intersections (CIs) at each θ (60° ⩽ θ ⩽ 90°) within the domain, 0 ⩽ ϕ ⩽ 2π. While transforming the adiabatic PESs to the diabatic ones, such surfaces show up six crossings along those seams. Our beyond Born-Oppenheimer approach could incorporate the effect of NACTs accurately and construct single-valued, continuous, smooth, and symmetric diabatic PESs. Since the location of CIs and the spatial amplitudes of NACTs are most prominent around ρ = 10 bohrs, generally only those results are depicted.

1.
T.
Oka
,
Phys. Rev. Lett.
45
,
531
(
1980
).
2.
T.
Oka
,
Rev. Mod. Phys.
64
,
1141
(
1992
).
3.
T. R.
Geballe
and
T.
Oka
,
Science
312
,
1610
(
2006
).
4.
S.
Datz
,
G.
Sundström
,
C.
Biedermann
,
L.
Broström
,
H.
Danared
,
S.
Mannervik
,
J. R.
Mowat
, and
M.
Larsson
,
Phys. Rev. Lett.
74
,
896
(
1995
).
5.
V.
Kokoouline
,
C. H.
Greene
, and
B. D.
Esry
,
Nature
412
,
891
(
2001
).
6.
W.
Meyer
,
P.
Botschwina
, and
P. R.
Burton
,
J. Chem. Phys.
84
,
891
(
1986
).
7.
R.
Röhse
,
W.
Kutzelnigg
,
R.
Jaquet
, and
W.
Klopper
,
J. Chem. Phys.
101
,
2231
(
1994
).
8.
R.
Jaquet
,
W.
Cencek
,
W.
Kutzelnigg
, and
J.
Rychlewski
,
J. Chem. Phys.
108
,
2837
(
1998
).
9.
B. M.
Dinelli
,
C. R. L.
Sueur
,
J.
Tennyson
, and
R. D.
Amos
,
Chem. Phys. Lett.
232
,
295
(
1995
).
10.
M.
Cernei
,
A.
Alijah
, and
A. J. C.
Varandas
,
J. Chem. Phys.
118
,
2637
(
2003
).
11.
C. W.
Bauschlicher
 Jr.
,
S. V.
O’Neil
,
R. K.
Preston
,
H. F.
Schaefer
 III
, and
C. F.
Bender
,
J. Chem. Phys.
59
,
1286
(
1973
).
12.
D.
Talbi
and
R. P.
Saxon
,
J. Chem. Phys.
89
,
2235
(
1988
).
13.
A.
Ichihara
and
K.
Yokohama
,
J. Chem. Phys.
103
,
2109
(
1995
).
14.
O.
Friedrich
,
A.
Alijah
,
Z. R.
Xu
, and
A. J. C.
Varandas
,
Phys. Rev. Lett.
86
,
1183
(
2001
).
15.
C.
Sanz
,
O.
Roncero
,
C.
Tablero
,
A.
Aguado
, and
M.
Paniagua
,
J. Chem. Phys.
114
,
2182
(
2001
).
16.
A. J. C.
Varandas
,
A.
Alijah
, and
M.
Cernei
,
Chem. Phys.
308
,
285
(
2005
).
17.
L. P.
Viegas
,
M.
Cernei
,
A.
Alijah
, and
A. J. C.
Varandas
,
J. Chem. Phys.
120
,
253
(
2004
).
18.
L. P.
Viegas
,
A.
Alijah
, and
A. J. C.
Varandas
,
J. Phys. Chem. A
109
,
3307
(
2005
).
19.
R.
Schinke
,
M.
Dupuis
, and
W. A.
Lester
,
J. Chem. Phys.
72
,
3909
(
1980
).
20.
J. N.
Murrell
,
S.
Carter
,
S. C.
Farantos
,
P.
Huxley
, and
A. J. C.
Varandas
,
Molecular Potential Energy Functions
(
Wiley
,
Chichester
,
1984
).
21.
A.
Aguado
,
O.
Roncero
,
C.
Tablero
,
C.
Sanz
, and
M.
Paniagua
,
J. Chem. Phys.
112
,
1240
(
2000
).
22.
R. K.
Preston
and
J. C.
Tully
,
J. Chem. Phys.
54
,
4297
(
1971
).
23.
H.
Kamisaka
,
W.
Bian
,
K.
Nobusada
, and
H.
Nakamura
,
J. Chem. Phys.
116
,
654
(
2002
).
24.
L. P.
Viegas
,
A.
Alijah
, and
A. J. C.
Varandas
,
J. Chem. Phys.
126
,
074309
(
2007
).
25.
M.
Born
and
J. R.
Oppenheimer
,
Ann. Phys. (Leipzig)
389
,
457
(
1927
).
26.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
,
Oxford
,
1954
).
27.
R.
Baer
,
D.
Charutz
,
R.
Kosloff
, and
M.
Baer
,
J. Chem. Phys.
105
,
9141
(
1996
).
28.
A. J. C.
Varandas
and
Z. R.
Xu
,
J. Chem. Phys.
112
,
2121
(
2000
).
29.
M.
Baer
,
S. H.
Lin
,
A.
Alijah
,
S.
Adhikari
, and
G. D.
Billing
,
Phys. Rev. A
62
,
032506
(
2000
).
30.
S.
Adhikari
,
G. D.
Billing
,
A.
Alijah
,
S. H.
Lin
, and
M.
Baer
,
Phys. Rev. A
62
,
032507
(
2000
).
31.
I. B.
Bersuker
,
The Jahn-Teller Effect
(
Cambridge University Press
,
2006
).
32.
Conical Intersections: Electronic Structure, Dynamics & Spectroscopy
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Koppel
(
World Scientific
,
2004
).
33.
M.
Baer
,
Chem. Phys. Lett.
35
,
112
(
1975
).
34.
Z. H.
Top
and
M.
Baer
,
J. Chem. Phys.
66
,
1363
(
1977
).
35.
D. R.
Yarkony
,
J. Phys. Chem. A
101
,
4263
(
1997
).
36.
R. G.
Sadygov
and
D. R.
Yarkony
,
J. Chem. Phys.
109
,
20
(
1998
).
37.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
70
,
2284
(
1979
).
38.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
77
,
6090
(
1982
).
39.
B. K.
Kendrick
,
C. A.
Mead
, and
D. G.
Truhlar
,
Chem. Phys.
277
,
31
(
2002
).
40.
J. C.
Tully
and
R. K.
Preston
,
J. Chem. Phys.
55
,
562
(
1971
).
41.
T. J.
Martínez
,
Acc. Chem. Res.
39
,
119
(
2006
).
42.
D. R.
Yarkony
,
Chem. Rev.
112
,
481
(
2012
).
43.
W. C.
Chung
,
Z.
Lan
,
Y.
Ohtsuki
,
N.
Shimakura
,
W.
Domcke
, and
Y.
Fujimura
,
Phys. Chem. Chem. Phys.
9
,
2075
(
2007
).
44.
T.
Yonehara
,
K.
Hanasaki
, and
K.
Takatsuka
,
Chem. Rev.
112
,
499
(
2012
).
45.
H.
Nakamura
,
Nonadiabatic Transition: Concepts, Basic Theories and Applications
(
World Scientific
,
Singapore
,
2002
).
46.
G. A.
Worth
and
L. S.
Cederbaum
,
Annu. Rev. Phys. Chem.
55
,
127
(
2004
).
47.
W.
Domcke
and
D. R.
Yarkony
,
Annu. Rev. Phys. Chem.
63
,
325
(
2012
).
48.
I. B.
Bersuker
,
Chem. Rev.
113
,
1351
(
2013
).
49.
M.
Baer
,
Phys. Rep.
358
,
75
(
2002
).
50.
M.
Baer
,
Beyond Born - Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms
(
Wiley-Interscience
,
2006
).
51.
D. R.
Yarkony
,
J. Chem. Phys.
105
,
10456
(
1996
).
52.
R.
Abrol
and
A.
Kuppermann
,
J. Chem. Phys.
116
,
1035
(
2002
).
53.
B.
Sarkar
and
S.
Adhikari
,
J. Chem. Phys.
124
,
074101
(
2006
).
54.
B.
Sarkar
and
S.
Adhikari
,
Int. J. Quantum Chem.
109
,
650
(
2009
).
55.
A. K.
Paul
,
S.
Sardar
,
B.
Sarkar
, and
S.
Adhikari
,
J. Chem. Phys.
131
,
124312
(
2009
).
56.
A. K.
Paul
,
S.
Ray
,
D.
Mukhopadhyay
, and
S.
Adhikari
,
J. Chem. Phys.
135
,
034107
(
2011
).
57.
S.
Mukherjee
,
S.
Bandyopadhyay
,
A. K.
Paul
, and
S.
Adhikari
,
J. Phys. Chem. A
117
,
3475
(
2013
).
58.
S.
Al-Jabour
,
M.
Baer
,
O.
Deeb
,
M.
Leibscher
,
J.
Manz
,
X.
Xu
, and
S.
Zilberg
,
J. Phys. Chem. A
114
,
2991
(
2010
).
59.
S.
Mukherjee
and
S.
Adhikari
,
Chem. Phys.
440
,
116
(
2014
).
60.
C. A.
Mead
,
Rev. Mod. Phys.
64
,
51
(
1992
).
61.
A.
Kuppermann
,
Chem. Phys. Lett.
32
,
374
(
1975
).
62.
B. R.
Johnson
,
J. Chem. Phys.
79
,
1916
(
1983
).
63.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al., molpro, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
64.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
65.
See supplementary material at http://dx.doi.org/10.1063/1.4901986 for the ADT angles and ADT matrix obtained by using P. II scheme.
66.
E.
Rosenman
,
S.
Hochman-Kowal
,
A.
Persky
, and
M.
Baer
,
Chem. Phys. Lett.
257
,
421
(
1996
).

Supplementary Material

You do not currently have access to this content.