This work presents an intermediate resolution model of the hydrodynamics of colloidal particles based on a mixed Eulerian-Lagrangian formulation. The particle is constructed with a small set of overlapping Peskin's Immersed Boundary kernels (blobs) which are held together by springs to build up a particle impenetrable core. Here, we used 12 blobs placed in the vertexes of an icosahedron with an extra one in its center. Although the particle surface is not explicitly resolved, we show that the short-distance hydrodynamic responses (flow profiles, translational and rotational mobilities) agree with spherical colloids and provide consistent effective radii. A remarkable property of the present multiblob model is that it naturally provides zero relative mobility at some finite inter-particle distance. In terms of mutual friction, this divergent force accurately represents the “soft” lubrication regime of spherical colloids and permits to resolve the increase of the solution viscosity up to moderately dense systems with volume fraction up to about 0.50. This intermediate resolution model is able to recover highly non-trivial (many-body) hydrodynamics using small particles whose radii are similar to the grid size h (in the range [1.6 − 3.2] h). Considering that the cost of the embedding fluid phase scales such as the cube of the particle radius, this result brings about a significant computational speed-up. Our code Fluam works in Graphics Processor Units and uses Fast Fourier Transform for the Poisson solver, which further improves its efficiency.

1.
S.
Kim
and
S.
Karrila
,
Microhydrodynaics: Principles and Selected Applications
(
Butterworth Heinemann
,
Boston
,
1991
).
2.
H.
Lowen
,
J. Phys.: Condens. Matter
24
,
460201
(
2012
).
3.
J. K.
Eaton
,
Int. J. Multiphase Flow
35
,
792
(
2009
).
4.
A. T.
Cate
,
J. J.
Derksen
,
L. M.
Portela
, and
H. E. A. V.
den Akker
,
J. Fluid Mech.
519
,
233
(
2004
).
5.
J. K. G.
Dhont
,
An Introduction to Dynamics of Colloids
,
Studies in Interface Science
, Vol.
2
(
Elsevier
,
1996
).
6.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media
(
Martinus Nijhoff Publishers
,
The Hague
,
1983
).
7.
F.
Janoschek
,
J.
Harting
, and
F.
Toschi
, “
Accurate lubrication corrections for spherical and non-spherical particles in discretized fluid simulations
,” preprint arXiv:1308.6482 (
2013
).
8.
K.
Amit
, “
Microscale dynamics in suspensions of non-spherical particles
,” Ph.D. dissertation (
University of Illinois at Urbana-Champaign
,
2009
).
9.
G. M.
Cicuta
,
E.
Onofri
,
M. C.
Lagomarsino
, and
P.
Cicuta
,
Phys. Rev. E
85
,
016203
(
2012
).
10.
A.
Sierou
and
J. F.
Brady
,
J. Fluid Mech.
448
,
115
(
2001
).
11.
G.
Muldowney
and
J. J. L.
Higdon
,
J. Fluid Mech.
298
,
167
192
(
1995
).
12.
B.
Dünweg
and
A. J. C.
Ladd
,
Adv. Polym. Sci.
221
,
89
(
2009
).
13.
A. J. C.
Ladd
and
R.
Verberg
,
J. Stat. Phys.
104
,
1191
(
2001
).
14.
Y. T.
Chew
,
C.
Shu
, and
Y.
Peng
,
J. Stat. Phys.
107
,
539
(
2002
).
15.
L.
Ferrás
,
J.
Nóbrega
, and
F.
Pinho
,
Int. J. Numer. Methods Fluids
72
,
724
(
2013
).
16.
R.
Kapral
,
Adv. Chem. Phys.
140
,
89
(
2008
).
17.
Xin
Bian
and
M.
Ellero
,
Comput. Phys. Commun.
185
,
53
(
2014
).
18.
N.-Q.
Nguyen
and
A.
Ladd
,
Phys. Rev. E
66
,
046708
(
2002
).
19.
M.
Uhlmann
,
J. Comput. Phys.
209
,
448
(
2005
).
20.
W.-P.
Breugem
, in
Proceedings of the 3rd Joint US-European Fluids Engineering Summer Meeting and 8th International Conference on Nanochannels, Microchannels, and Minichannels
(
ASME
,
2010
).
21.
Z.-G.
Feng
and
E. E.
Michaelides
,
J. Comput. Phys.
202
,
20
(
2005
).
22.
J.
Molina
and
R.
Yamamoto
,
J. Chem. Phys.
139
,
234105
(
2013
).
23.
C.
Peskin
,
Acta Numerica
11
,
479
(
2002
).
24.
P. J.
Atzberger
,
P. R.
Kramer
, and
C. S.
Peskin
,
J. Comput. Phys.
224
,
1255
(
2007
).
25.
F.
Balboa Usabiaga
,
R.
Delgado-Buscalioni
,
B. E.
Griffith
, and
A.
Donev
,
Comput. Methods Appl. Mech. Eng.
269
,
139
(
2014
).
26.
F.
Balboa Usabiaga
, “
Minimal models for finite particles in fluctuating hydrodynamics
,” M.S. thesis (
Universidad Autónoma de Madrid
,
2014
).
27.
F.
Balboa Usabiaga
,
I.
Pagonabarraga
, and
R.
Delgado-Buscalioni
,
J. Comput. Phys.
235
,
701
(
2012
).
28.
A. P. S.
Bhalla
,
R.
Bale
,
B. E.
Griffith
, and
N. A.
Patankar
,
J. Comput. Phys.
250
,
446
(
2013
).
29.
B. U.
Felderhof
,
Phys. Rev. E
89
,
033001
(
2014
).
30.
F.
Balboa Usabiaga
and
R.
Delgado-Buscalioni
,
Phys. Rev. E
88
,
063304
(
2013
).
31.
A. M.
Roma
,
C. S.
Peskin
, and
M. J.
Berger
,
J. Comput. Phys.
153
,
509
(
1999
).
32.
R.
Zwanzig
and
M.
Bixon
,
J. Fluid Mech.
69
,
21
(
1975
).
33.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon Press
,
New York
,
1959
).
34.
S.
Delong
,
F.
Balboa Usabiaga
,
R.
Delgado-Buscalioni
,
B. E.
Griffith
, and
A.
Donev
,
J. Chem. Phys.
140
,
134110
(
2014
).
35.
In particular,
${\mathbb {I}}_c= \sum _{i,j} {\bf s}_i\cdot {\bf s}_j \left[ {\bm 1} \mathrm{Tr} - {{\bm 1}}\right] {\bm J}_i{{\bm P}}{\bm S}_j - {\bm J}_i{{\bm P}}{\bm S}_j : {\bf s}_i{\bf s}_j {\bm 1} -\mathrm{Tr}({\bm J}_i{{\bm P}}{\bm S}_j){\bf s}_i{\bf s}_j +{\bm J}_i{{\bm P}}{\bm S}_j\cdot {\bf s}_i{\bf s}_j +{\bf s}_i{\bf s}_j\cdot {\bm J}_i{{\bm P}}{\bm S}_j$
Ic=i,jsi·sj1 Tr 1JiPSjJiPSj:sisj1 Tr (JiPSj)sisj+JiPSj·sisj+sisj·JiPSj
, where
$\mathrm{Tr} {{\bm A}}=A^{\alpha ,\alpha }$
Tr A=Aα,α
is the trace operator.
36.
A.
Pinelli
,
I.
Naqavi
,
U.
Piomelli
, and
J.
Favier
,
J. Comput. Phys.
229
,
9073
(
2010
).
37.
F.
Balboa Usabiaga
,
X.
Xie
,
R.
Delgado-Buscalioni
, and
A.
Donev
,
J. Chem. Phys.
139
,
214113
(
2013
).
38.
M. R.
Maxey
and
J. J.
Riley
,
Phys. Fluids
26
,
883
(
1983
).
39.
H.
Hasimoto
,
J. Fluid Mech.
5
,
317
(
1959
).
40.
P.
Mazur
and
D.
Bedeaux
,
Physica
76
,
235
(
1974
).
41.
A. V.
Zatovsky
,
Izv. Vuzov. Fizika
10
,
13
(
1969
).
42.
J.
Rotne
and
S.
Prager
,
J. Chem. Phys.
50
,
4831
(
1969
).
43.
H.
Brenner
,
Chem. Eng. Sci.
16
,
242
(
1961
).
44.
R. E.
Hansford
,
Matematika
17
,
270
(
1970
).
45.
N. J.
Wagner
and
J. F.
Brady
,
Phys. Today
62
(
10
),
27
(
2009
).
46.
X.
Bian
,
S.
Litvinov
,
M.
Ellero
, and
N. J.
Wagner
,
J. Non-Newton. Fluid Mech.
213
,
39
(
2014
).
47.
K.
Yeo
and
M. R.
Maxey
,
J. Comput. Phys.
229
,
2401
(
2010
).
48.
E.
Keaveny
,
J. Comput. Phys.
269
,
61
(
2014
).
49.
S. L.
Dance
and
M. R.
Maxey
,
J. Comput. Phys.
189
,
212
(
2003
).
50.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic Press
,
New York
,
1986
).
51.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
1967
).
52.
A. J. W.
ten Brinke
,
L.
Bailey
,
H. N. W.
Lekkerkerker
, and
G. C.
Maitland
,
Soft Matter
3
,
1145
1162
(
2007
).
53.
F.
Balboa Usabiaga
, Fluam. See https://code.google.com/p/fluam/.
54.
A.
de Candia
,
E. D.
Gado
,
A.
Fierro
, and
A.
Coniglio
,
J. Stat. Mech.: Theor. Exp.
(
2009
)
P02052
.
55.
J. K.
Whitmer
and
E.
Luijten
,
J. Phys. Chem. B
115
,
7294
(
2011
).
56.
X.
Cao
,
H.
Cummins
, and
J.
Morris
,
J. Colloid Interface Sci.
368
,
86
(
2012
).
57.
M. R.
Maxey
and
B. K.
Patel
,
Int. J. Multiphase Flow
27
,
1603
(
2001
).
You do not currently have access to this content.