The excited states of a diverse set of molecules are examined using a collection of newly implemented analysis methods. These examples expose the particular power of three of these tools: (i) natural difference orbitals (the eigenvectors of the difference density matrix) for the description of orbital relaxation effects, (ii) analysis of the one-electron transition density matrix in terms of an electron-hole picture to identify charge resonance and excitonic correlation effects, and (iii) state-averaged natural transition orbitals for a compact simultaneous representation of several states. Furthermore, the utility of a wide array of additional analysis methods is highlighted. Five molecules with diverse excited state characteristics are chosen for these tasks: pyridine as a prototypical small heteroaromatic molecule, a model system of six neon atoms to study charge resonance effects, hexatriene in its neutral and radical cation forms to exemplify the cases of double excitations and spin-polarization, respectively, and a model iridium complex as a representative metal organic compound. Using these examples a number of phenomena, which are at first sight unexpected, are highlighted and their physical significance is discussed. Moreover, the generality of the conclusions of this paper is verified by a comparison of single- and multireference ab initio methods.

1.
F.
Plasser
,
M.
Wormit
, and
A.
Dreuw
,
J. Chem. Phys.
141
,
024106
(
2014
).
2.
J.
Schirmer
,
Phys. Rev. A
26
,
2395
(
1982
).
3.
Y.
Shao
,
L. F.
Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
 Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C.
Yeh Lin
,
T.
Van Voorhis
,
S.
Hung Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y.
Min Rhee
,
J.
Ritchie
,
E.
Rosta
,
C.
David Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H.
Lee Woodcock
 III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
 III
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
4.
A. I.
Krylov
and
P. M. W.
Gill
,
WIREs Comput. Mol. Sci.
3
,
317
(
2013
).
5.
M.
Wormit
,
D. R.
Rehn
,
P. H.
Harbach
,
J.
Wenzel
,
C. M.
Krauter
,
E.
Epifanovsky
, and
A.
Dreuw
,
Mol. Phys.
112
,
774
(
2014
).
6.
P.-O.
Lowdin
,
Phys. Rev.
97
,
1474
(
1955
).
7.
A. V.
Luzanov
,
A. A.
Sukhorukov
, and
V. E.
Umanskii
,
Theor. Exp. Chem.
10
,
354
(
1976
).
8.
R. L.
Martin
,
J. Chem. Phys.
118
,
4775
(
2003
).
9.
10.
H.
Lischka
,
R.
Shepard
,
F. B.
Brown
, and
I.
Shavitt
,
Int. J. Quantum Chem.
S15
,
91
(
1981
).
11.
R.
Shepard
,
I.
Shavitt
,
R. M.
Pitzer
,
D. C.
Comeau
,
M.
Pepper
,
H.
Lischka
,
P. G.
Szalay
,
R.
Ahlrichs
,
F. B.
Brown
, and
J. G.
Zhao
,
Int. J. Quantum Chem.
34
,
149
(
1988
).
12.
P. G.
Szalay
,
T.
Müller
,
G.
Gidofalvi
,
H.
Lischka
, and
R.
Shepard
,
Chem. Rev.
112
,
108
(
2012
).
13.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
,
R. M.
Pitzer
,
M.
Dallos
,
T.
Mueller
,
P. G.
Szalay
,
F. B.
Brown
,
R.
Ahlrichs
,
H. J.
Boehm
,
A.
Chang
,
D. C.
Comeau
,
R.
Gdanitz
,
H.
Dachsel
,
C.
Ehrhardt
,
M.
Ernzerhof
,
P.
Hoechtl
,
S.
Irle
,
G.
Kedziora
,
T.
Kovar
,
V.
Parasuk
,
M. J. M.
Pepper
,
P.
Scharf
,
H.
Schiffer
,
M.
Schindler
,
M.
Schueler
,
M.
Seth
,
E. A.
Stahlberg
,
J.-G.
Zhao
,
S.
Yabushita
,
Z.
Zhang
,
M.
Barbatti
,
S.
Matsika
,
M.
Schuurmann
,
D. R.
Yarkony
,
S. R.
Brozell
,
E. V.
Beck
,
J.-P.
Blaudeau
,
M.
Ruckenbauer
,
B.
Sellner
,
F.
Plasser
, and
J. J.
Szymczak
, Columbus: An ab initio electronic structure program, release 7.0, see www.univie.ac.at/columbus (
2013
).
14.
H.
Lischka
,
T.
Mueller
,
P. G.
Szalay
,
I.
Shavitt
,
R. M.
Pitzer
, and
R.
Shepard
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
191
(
2011
).
15.
A. B.
Trofimov
and
J.
Schirmer
,
J. Phys. B
28
,
2299
(
1995
).
16.
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
17.
J. A.
Pople
,
R.
Seeger
, and
R.
Krishnan
,
Int. J. Quantum Chem.
12
,
149
(
1977
).
18.
F.
Plasser
,
H.
Pašalić
,
M. H.
Gerzabek
,
F.
Libisch
,
R.
Reiter
,
J.
Burgdörfer
,
T.
Müller
,
R.
Shepard
, and
H.
Lischka
,
Angew. Chem., Int. Ed.
52
,
2581
(
2013
).
19.
Z.
Cui
,
H.
Lischka
,
T.
Müller
,
F.
Plasser
, and
M.
Kertesz
,
ChemPhysChem
15
,
165
(
2014
).
20.
A. B.
Trofimov
,
G.
Stelter
, and
J.
Schirmer
,
J. Chem. Phys.
111
,
9982
(
1999
).
21.
P. H. P.
Harbach
,
M.
Wormit
, and
A.
Dreuw
, “
The third-order algebraic diagrammatic construction scheme ADC(3) of thepolarization propagator for closed-shell molecules: Efficient implementation andbenchmarking
,”
J. Chem. Phys.
(submitted).
22.
J. H.
Starcke
,
M.
Wormit
,
J.
Schirmer
, and
A.
Dreuw
,
Chem. Phys.
329
,
39
(
2006
).
23.
J.
Schirmer
and
A. B.
Trofimov
,
J. Chem. Phys.
120
,
11449
(
2004
).
24.
J. H.
Starcke
,
M.
Wormit
, and
A.
Dreuw
,
J. Chem. Phys.
131
,
144311
(
2009
).
25.
P.
Hariharan
and
J.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
26.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
299
(
1985
).
27.
F.
Plasser
, “
Wave function analysis tools
,” (October
2013
), see www.iwr.uni-heidelberg.de/groups/compchem.
28.
Z. L.
Cai
and
J. R.
Reimers
,
J. Phys. Chem. A
104
,
8389
(
2000
).
29.
See supplementary material at http://dx.doi.org/10.1063/1.4885820 for additional orbital and density plots of the molecules discussed in the text.
30.
M.
Head-Gordon
,
A.
Grana
,
D.
Maurice
, and
C.
White
,
J. Phys. Chem.
99
,
14261
(
1995
).
31.
X.
Liu
,
Q.
Ou
,
E.
Alguire
, and
J. E.
Subotnik
,
J. Chem. Phys.
138
,
221105
(
2013
).
32.
F.
Plasser
,
R.
Crespo-Otero
,
M.
Pederzoli
,
J.
Pittner
,
H.
Lischka
, and
M.
Barbatti
,
J. Chem. Theory Comput.
10
,
1395
(
2014
).
34.
N. C.
Handy
and
H. F.
Schaefer
 III
,
J. Chem. Phys.
81
,
5031
(
1984
).
35.
X.
Liu
and
J.
Subotnik
,
J. Chem. Theory Comput.
10
,
1004
(
2014
).
36.
P. R.
Surján
,
Chem. Phys. Lett.
439
,
393
(
2007
).
37.
A. V.
Luzanov
and
O. A.
Zhikol
,
Int. J. Quantum Chem.
110
,
902
(
2010
).
38.
A.
Luzanov
and
O.
Zhikol
, in
Practical Aspects of Computational Chemistry I
, edited by
J.
Leszczynski
and
M. K.
Shukla
(
Springer Netherlands
,
2012
), pp.
415
449
.
39.
A. N.
Panda
,
F.
Plasser
,
A. J. A.
Aquino
,
I.
Burghardt
, and
H.
Lischka
,
J. Phys. Chem. A
117
,
2181
(
2013
).
40.
F.
Plasser
and
H.
Lischka
,
J. Chem. Theory Comput.
8
,
2777
(
2012
).
41.
F.
Plasser
,
A.
Aquino
,
H.
Lischka
, and
D.
Nachtigallova
, in
Photoinduced Phenomena in Nucleic Acids
, edited by
M.
Barbatti
,
A. C.
Borin
, and
S.
Ullrich
(
Springer
,
2014
).
42.
A. D.
Dutoi
,
L. S.
Cederbaum
,
M.
Wormit
,
J. H.
Starcke
, and
A.
Dreuw
,
J. Chem. Phys.
132
,
144302
(
2010
).
43.
S.
Tretiak
and
S.
Mukamel
,
Chem. Rev.
102
,
3171
(
2002
).
44.
45.
F.
Plasser
and
H.
Lischka
,
Photochem. Photobiol. Sci.
12
,
1440
(
2013
).
46.
A.
Das
,
K. K.
Mahato
, and
T.
Chakraborty
,
J. Chem. Phys.
114
,
6107
(
2001
).
47.
Y.
Wang
,
O.
Haze
,
J. P.
Dinnocenzo
,
S.
Farid
,
R. S.
Farid
, and
I. R.
Gould
,
J. Org. Chem.
72
,
6970
(
2007
).
48.
M.
Dallos
and
H.
Lischka
,
Theor. Chem. Acc.
112
,
16
(
2004
).
49.
E. R.
Davidson
,
J. Phys. Chem.
100
,
6161
(
1996
).
50.
K.
Nakayama
,
H.
Nakano
, and
K.
Hirao
,
Int. J. Quantum Chem.
66
,
157
(
1998
).
51.
J.-L.
Brédas
,
J.
Cornil
,
D.
Beljonne
,
D. A.
dos Santos
, and
Z.
Shuai
,
Acc. Chem. Res.
32
,
267
(
1999
).
52.
Unfortunately, the transition density matrices (and therefore Ω) are only available between states of the same multiplicity in the current implementation.
53.
K.
Takatsuka
,
T.
Fueno
, and
K.
Yamaguchi
,
Theor. Chim. Acta
48
,
175
(
1978
).
54.
M.
Head-Gordon
,
Chem. Phys. Lett.
372
,
508
(
2003
).
55.
C.
Adachi
,
M. A.
Baldo
,
M. E.
Thompson
, and
S. R.
Forrest
,
J. Appl. Phys.
90
,
5048
(
2001
).
56.
C.
Ulbricht
,
B.
Beyer
,
C.
Friebe
,
A.
Winter
, and
U. S.
Schubert
,
Adv. Mater.
21
,
4418
(
2009
).
57.
M.
Tavasli
,
T. N.
Moore
,
Y.
Zheng
,
M. R.
Bryce
,
M. A.
Fox
,
G. C.
Griffiths
,
V.
Jankus
,
H. A.
Al-Attar
, and
A. P.
Monkman
,
J. Mater. Chem.
22
,
6419
(
2012
).
58.
S. I.
Bokarev
,
O. S.
Bokareva
, and
O.
Kuhn
,
J. Chem. Phys.
136
,
214305
(
2012
).
59.
H.
Yersin
,
A. F.
Rausch
,
R.
Czerwieniec
,
T.
Hofbeck
, and
T.
Fischer
,
Coord. Chem. Rev.
255
,
2622
(
2011
).
60.
K.
Dedeian
,
P. I.
Djurovich
,
F. O.
Garces
,
G.
Carlson
, and
R. J.
Watts
,
Inorg. Chem.
30
,
1685
(
1991
).
61.
S.
Vancoillie
,
H.
Zhao
,
V. T.
Tran
,
M. F. A.
Hendrickx
, and
K.
Pierloot
,
J. Chem. Theory Comput.
7
,
3961
(
2011
).
62.
M. J. G.
Peach
,
P.
Benfield
,
T.
Helgaker
, and
D. J.
Tozer
,
J. Chem. Phys.
128
,
044118
(
2008
).
63.
C. A.
Guido
,
P.
Cortona
,
B.
Mennucci
, and
C.
Adamo
,
J. Chem. Theory Comput.
9
,
3118
(
2013
).
64.
Y.
Li
and
C.
Ullrich
,
Chem. Phys.
391
,
157
(
2011
).
65.
J.
Coe
and
M.
Paterson
,
Mol. Phys.
112
,
733
(
2014
).

Supplementary Material

You do not currently have access to this content.