A variety of density matrix based methods for the analysis and visualization of electronic excitations are discussed and their implementation within the framework of the algebraic diagrammatic construction of the polarization propagator is reported. Their mathematical expressions are given and an extensive phenomenological discussion is provided to aid the interpretation of the results. Starting from several standard procedures, e.g., population analysis, natural orbital decomposition, and density plotting, we proceed to more advanced concepts of natural transition orbitals and attachment/detachment densities. In addition, special focus is laid on information coded in the transition density matrix and its phenomenological analysis in terms of an electron-hole picture. Taking advantage of both the orbital and real space representations of the density matrices, the physical information in these analysis methods is outlined, and similarities and differences between the approaches are highlighted. Moreover, new analysis tools for excited states are introduced including state averaged natural transition orbitals, which give a compact description of a number of states simultaneously, and natural difference orbitals (defined as the eigenvectors of the difference density matrix), which reveal details about orbital relaxation effects.

1.
A.
Dreuw
and
M.
Head-Gordon
,
Chem. Rev.
105
,
4009
(
2005
).
2.
F.
Plasser
,
M.
Barbatti
,
A. J. A.
Aquino
, and
H.
Lischka
,
Theor. Chem. Acc.
131
,
1073
(
2012
).
3.
L.
Gonzélez
,
D.
Escudero
, and
L.
Serrano-Andrés
,
ChemPhysChem
13
,
28
(
2012
).
4.
J.
Schirmer
,
Phys. Rev. A
26
,
2395
(
1982
).
5.
P.-O.
Lowdin
,
Phys. Rev.
97
,
1474
(
1955
).
6.
A. V.
Luzanov
,
A. A.
Sukhorukov
, and
V. E.
Umanskii
,
Theor. Exp. Chem.
10
,
354
(
1976
).
7.
R. L.
Martin
,
J. Chem. Phys.
118
,
4775
(
2003
).
8.
I.
Mayer
,
Chem. Phys. Lett.
437
,
284
(
2007
).
9.
M.
Head-Gordon
,
A.
Grana
,
D.
Maurice
, and
C.
White
,
J. Phys. Chem.
99
,
14261
(
1995
).
10.
F.
Plasser
and
H.
Lischka
,
J. Chem. Theory Comput.
8
,
2777
(
2012
).
11.
A. L. L.
East
and
E. C.
Lim
,
J. Chem. Phys.
113
,
8981
(
2000
).
12.
S.
Tretiak
and
S.
Mukamel
,
Chem. Rev.
102
,
3171
(
2002
).
13.
A. V.
Luzanov
and
O. A.
Zhikol
,
Int. J. Quantum Chem.
110
,
902
(
2010
).
14.
I.
Mayer
,
Chem. Phys. Lett.
443
,
420
(
2007
).
15.
P. R.
Surján
,
Chem. Phys. Lett.
439
,
393
(
2007
).
16.
F.
Plasser
,
A. J. A.
Aquino
,
W. L.
Hase
, and
H.
Lischka
,
J. Phys. Chem. A
116
,
11151
(
2012
).
17.
A. N.
Panda
,
F.
Plasser
,
A. J. A.
Aquino
,
I.
Burghardt
, and
H.
Lischka
,
J. Phys. Chem. A
117
,
2181
(
2013
).
18.
D.
Balamurugan
,
A. J. A.
Aquino
,
F.
de Dios
,
L.
Flores
,
H.
Lischka
, and
M. S.
Cheung
,
J. Phys. Chem. B
117
,
12065
(
2013
).
19.
R.
Binder
,
J.
Wahl
,
S.
Römer
, and
I.
Burghardt
,
Faraday Discuss.
163
,
205
(
2013
).
20.
L.
Blancafort
and
A. A.
Voityuk
,
J. Chem. Phys.
140
,
095102
(
2014
).
21.
F.
Plasser
,
M.
Wormit
, and
A.
Dreuw
,
J. Chem. Phys.
141
,
024107
(
2014
).
22.
J.-L.
Brédas
,
J.
Cornil
,
D.
Beljonne
,
D. A.
dos Santos
, and
Z.
Shuai
,
Acc. Chem. Res.
32
,
267
(
1999
).
23.
N.
Kirova
,
Polym. Int.
57
,
678
(
2008
).
24.
M.
Rohlfing
and
S. G.
Louie
,
Phys. Rev. Lett.
82
,
1959
(
1999
).
25.
J.-W.
van der Horst
,
P. A.
Bobbert
,
M. A. J.
Michels
,
G.
Brocks
, and
P. J.
Kelly
,
Phys. Rev. Lett.
83
,
4413
(
1999
).
26.
T. G.
Pedersen
and
T. B.
Lynge
,
Comput. Mater. Sci.
27
,
123
(
2003
).
27.
T. G.
Pedersen
,
P. M.
Johansen
, and
H. C.
Pedersen
,
Phys. Rev. B
61
,
10504
(
2000
).
28.
W.
Barford
and
N.
Paiboonvorachat
,
J. Chem. Phys.
129
,
164716
(
2008
).
29.
C.
Wu
,
S. V.
Malinin
,
S.
Tretiak
, and
V. Y.
Chernyak
,
J. Chem. Phys.
129
,
174111
(
2008
).
30.
W.
Barford
and
D.
Trembath
,
Phys. Rev. B
80
,
165418
(
2009
).
31.
T. M.
Clarke
and
J. R.
Durrant
,
Chem. Rev.
110
,
6736
(
2010
).
32.
Z. L.
Cai
,
K.
Sendt
, and
J. R.
Reimers
,
J. Chem. Phys.
117
,
5543
(
2002
).
33.
S.
Tretiak
,
K.
Igumenshchev
, and
V.
Chernyak
,
Phys. Rev. B
71
,
033201
(
2005
).
34.
V.
Lukes
,
A. J. A.
Aquino
,
H.
Lischka
, and
H.-F.
Kauffmann
,
J. Phys. Chem. B
111
,
7954
(
2007
).
35.
D.
Lumpi
,
E.
Horkel
,
F.
Plasser
,
H.
Lischka
, and
J.
Fröhlich
,
ChemPhysChem
14
,
1016
(
2013
).
36.
N.
Kuritz
,
T.
Stein
,
R.
Baer
, and
L.
Kronik
,
J. Chem. Theory Comput.
7
,
2408
(
2011
).
37.
A.
Dreuw
and
M.
Head-Gordon
,
J. Am. Chem. Soc.
126
,
4007
(
2004
).
38.
R.
Richard
and
J.
Herbert
,
J. Chem. Theory Comput.
7
,
1296
(
2011
).
39.
G. D.
Scholes
and
K. P.
Ghiggino
,
J. Phys. Chem.
98
,
4580
(
1994
).
40.
X.
Feng
,
A. V.
Luzanov
, and
A. I.
Krylov
,
J. Phys. Chem. Lett.
4
,
3845
(
2013
).
41.
In the general case, one cannot make a distinction between occupied and virtual orbitals, and therefore all the sums go over the whole orbital basis.
42.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
43.
E.
Batista
and
R.
Martin
, “
Natural transition orbitals
,”
Encyclopedia of Computational Chemistry
(
John Wiley and Sons, Inc.
,
2004
).
44.
F.
Plasser
, “
Quantum mechanical simulations of defect dynamics in DNA and model systems
,” Ph.D. thesis,
University of Vienna
,
2012
.
45.
J.
Skolnik
and
D.
Mazziotti
,
Phys. Rev. A
88
,
032517
(
2013
).
46.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
47.
E.
Ramos-Cordoba
and
P.
Salvador
,
J. Chem. Theory Comput.
10
,
634
(
2014
).
48.
K.
Takatsuka
,
T.
Fueno
, and
K.
Yamaguchi
,
Theor. Chim. Acta
48
,
175
(
1978
).
49.
M.
Head-Gordon
,
Chem. Phys. Lett.
372
,
508
(
2003
).
50.
F.
Plasser
,
H.
Pašalić
,
M. H.
Gerzabek
,
F.
Libisch
,
R.
Reiter
,
J.
Burgdörfer
,
T.
Müller
,
R.
Shepard
, and
H.
Lischka
,
Angew. Chem., Int. Ed.
52
,
2581
(
2013
).
51.
Z.
Cui
,
H.
Lischka
,
T.
Müller
,
F.
Plasser
, and
M.
Kertesz
,
ChemPhysChem
15
,
165
(
2014
).
52.
J.
Rissler
,
H.
Bässler
,
F.
Gebhard
, and
P.
Schwerdtfeger
,
Phys. Rev. B
64
,
045122
(
2001
).
53.
G.
Strinati
,
Phys. Rev. B
29
,
5718
(
1984
).
54.
M.
Rohlfing
and
S.
Louie
,
Phys. Rev. B
62
,
4927
(
2000
).
55.
A.
Luzanov
and
O.
Zhikol
, in
Practical Aspects of Computational Chemistry I
, edited by
J.
Leszczynski
and
M. K.
Shukla
(
Springer
,
Netherlands
,
2012
), pp.
415
449
.
56.
A.
Voityuk
,
Photochem. Photobiol. Sci.
12
,
1303
(
2013
).
57.
A. V.
Luzanov
and
O. V.
Prezhdo
,
Int. J. Quantum Chem.
102
,
582
(
2005
).
58.
I.
Mayer
,
Chem. Phys. Lett.
97
,
270
(
1983
).
59.
M.
Sun
,
P.
Kjellberg
,
W. J.
Beenken
, and
T.
Pullerits
,
Chem. Phys.
327
,
474
(
2006
).
60.
I. G.
Scheblykin
,
A.
Yartsev
,
T.
Pullerits
,
V.
Gulbinas
, and
V.
Sundstöm
,
J. Phys. Chem. B
111
,
6303
(
2007
).
61.
F.
Plasser
and
H.
Lischka
,
Photochem. Photobiol. Sci.
12
,
1440
(
2013
).
62.
F.
Plasser
,
A.
Aquino
,
H.
Lischka
, and
D.
Nachtigallova
, in
Photoinduced Phenomena in Nucleic Acids
, edited by
M.
Barbatti
,
A. C.
Borin
, and
S.
Ullrich
(
Springer
,
2014
).
63.
A. D.
Dutoi
,
L. S.
Cederbaum
,
M.
Wormit
,
J. H.
Starcke
, and
A.
Dreuw
,
J. Chem. Phys.
132
,
144302
(
2010
).
64.
For this formal statement, it is assumed that all matrices go over the whole orbital space, which means that potentially a large number of zero eigenvalues are present.
65.
J.
Schirmer
,
Phys. Rev. A
43
,
4647
(
1991
).
66.
A. B.
Trofimov
,
G.
Stelter
, and
J.
Schirmer
,
J. Chem. Phys.
111
,
9982
(
1999
).
67.
J.
Schirmer
and
A. B.
Trofimov
,
J. Chem. Phys.
120
,
11449
(
2004
).
68.
M.
Wormit
,
D. R.
Rehn
,
P. H.
Harbach
,
J.
Wenzel
,
C. M.
Krauter
,
E.
Epifanovsky
, and
A.
Dreuw
,
Mol. Phys.
112
,
774
(
2014
).
69.
Y.
Shao
,
L. F.
Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O'Neill
,
R. A.
DiStasio
 Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C.
Yeh Lin
,
T.
Van Voorhis
,
S.
Hung Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y.
Min Rhee
,
J.
Ritchie
,
E.
Rosta
,
C.
David Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H.
Lee Woodcock
 III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
 III
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
70.
A. I.
Krylov
and
P. M. W.
Gill
,
WIREs: Comput. Mol. Sci.
3
,
317
(
2013
).
You do not currently have access to this content.