Step-growth alternating interfacial polymerization between two miscible or immiscible monomer melts is investigated theoretically and by dissipative particle dynamics simulations. In both cases the kinetics for an initially bilayer system passes from the reaction to diffusion control. The polymer composed of immiscible monomers precipitates at the interface forming a film of nearly uniform density. It is demonstrated that the reaction proceeds in a narrow zone, which expands much slower than the whole film, so that newly formed polymer is extruded from the reaction zone. This concept of “reactive extrusion” is used to analytically predict the degree of polymerization and distribution of all components (monomers, polymer, and end groups) within the film in close agreement with the simulations. Increasing the comonomer incompatibility leads to thinner and more uniform films with the higher average degree of polymerization. The final product is considerably more polydisperse than expected for the homogeneous step-growth polymerization. The results extend the previous theoretical reports on interfacial polymerization and provide new insights into the internal film structure and polymer characteristics, which are important for membrane preparation, microencapsulation, and 3D printing technologies. A systematic way of mapping the simulation data onto laboratory scales is discussed.

1.
V.
Enkelmann
and
G.
Wegner
,
Makromol. Chem.
177
,
3177
(
1976
).
2.
J. E.
Cadotte
,
R. J.
Petersen
,
R. E.
Larson
, and
E. E.
Erickson
,
Desalination
32
,
25
(
1980
).
3.
B. H.
Jeong
,
E. M. V.
Hoek
,
Y. S.
Yan
,
A.
Subramani
,
X. F.
Huang
,
G.
Hurwitz
,
A. K.
Ghosh
, and
A.
Jawor
,
J. Membr. Sci.
294
,
1
(
2007
).
4.
N. Y.
Yip
,
A.
Tiraferri
,
W. A.
Phillip
,
J. D.
Schiffman
, and
M.
Elimelech
,
Environ. Sci. Technol.
44
,
3812
(
2010
).
5.
W. J.
Lau
,
A. F.
Ismail
,
N.
Misdan
, and
M. A.
Kassim
,
Desalination
287
,
190
(
2012
).
6.
K. P.
Lee
,
T. C.
Arnot
, and
D.
Mattia
,
J. Membr. Sci.
370
,
1
(
2011
).
7.
C.
Feng
,
K. C.
Khulbe
, and
T.
Matsuura
,
J. Appl. Polym. Sci.
115
,
756
(
2010
).
8.
P. W.
Morgan
,
J. Macromol. Sci. Chem.
A15
,
683
(
1981
).
9.
R.
Arshady
,
J. Microencapsul.
6
,
13
(
1989
).
10.
T. L.
Whateley
, in
Microencapsulation: Methods and Industrial Applications
, edited by
S.
Benita
(
Marcel Dekker
,
New York
,
1996
).
11.
H.
Uludag
,
P.
De Vos
, and
P. A.
Tresco
,
Adv. Drug Delivery Rev.
42
,
29
(
2000
).
12.
C.
Perignon
,
G.
Ongmayeb
,
R.
Neufeld
,
Y.
Frere
, and
D.
Poncelet
, “
Microencapsulation by interfacial polymerisation: Membrane formation and structure
,”
J. Microencapsul.
(published online).
13.
C.
Mayer
,
Int. J. Artif. Organs
28
,
1163
(
2005
).
14.
P.
Couvreur
,
G.
Barratt
,
E.
Fattal
,
P.
Legrand
, and
C.
Vauthier
,
Crit. Rev. Ther. Drug Carrier Syst.
19
,
99
(
2002
).
15.
M.
Barrere
and
K.
Landfester
,
Polymer
44
,
2833
(
2003
).
16.
L.
Torini
,
J. F.
Argillier
, and
N.
Zydowicz
,
Macromolecules
38
,
3225
(
2005
).
17.
J. P.
Rao
and
K. E.
Geckeler
,
Prog. Polym. Sci.
36
,
887
(
2011
).
18.
J.
Perelaer
,
P.
Kroeber
,
J. T.
,
Delaney
, and
U. S.
Schubert
, “
Fabrication of two and three-dimensional structures by using inkjet printing
,” in
25th International Conference on Digital Printing Technologies
,
Louisville, KY
, 20–24 September
2009
.
19.
R.
Kopp
,
E.
Mayer
, and
C.
Wolfrum
, “
Method for the production of three-dimensional or flat structures
,” U.S. patent 2,378,348 A1 (August 10,
1999
).
20.
P.
Kröber
,
J. T.
Delaney
,
J.
Perelaer
, and
U. S.
Schubert
,
J. Mater. Chem.
19
,
5234
(
2009
).
21.
A. V.
Berezkin
and
A. R.
Khokhlov
,
J. Polym. Sci., Part B: Polym. Phys.
44
,
2698
(
2006
).
22.
Yu. V.
Sharikov
,
M. I.
Fedotova
, and
L. B.
Sokolov
,
Polym. Sci. USSR
15
,
1102
(
1973
).
23.
P. W.
Morgan
,
Condensation Polymers by Interfacial and Solution Methods
(
Interscience Publishers
,
New York
,
1965
).
24.
C. R.
Bartels
,
K. L.
Kreuz
, and
A.
Wachtel
,
J. Membr. Sci.
32
,
291
(
1987
);
C. R.
Bartels
,
J. Membr. Sci.
45
,
225
(
1989
).
25.
S. A.
Sundet
,
J. Membr. Sci.
76
,
175
(
1993
).
26.
L. J. J. M.
Janssen
and
K.
te Nijenhuis
,
J. Membr. Sci.
65
,
59
(
1992
);
L. J. J. M.
Janssen
and
K.
te Nijenhuis
,
J. Membr. Sci.
65
,
69
(
1992
);
L. J. J. M.
Janssen
,
A.
Boersma
, and
K.
te Nijenhuis
,
J. Membr. Sci.
79
,
11
(
1993
).
27.
J.
Ji
,
B. J.
Trushinski
,
R. F.
Childs
,
J. M.
Dickson
, and
B. E.
McCarry
,
J. Appl. Polym. Sci.
64
,
2381
(
1997
).
28.
L.
Danicher
,
P.
Gramain
,
Y.
Frere
, and
A.
Le Calve
,
React. Funct. Polym.
42
,
111
(
1999
).
29.
V.
Freger
,
Langmuir
19
,
4791
(
2003
).
30.
V.
Freger
and
S.
Srebnik
,
J. Appl. Polym. Sci.
88
,
1162
(
2003
).
31.
V. V.
Yashin
and
A. C.
Balazs
,
J. Chem. Phys.
121
,
2833
(
2004
);
[PubMed]
V. V.
Yashin
and
A. C.
Balazs
,
J. Chem. Phys.
121
,
11440
(
2004
)
[PubMed]
32.
A. N.
Semenov
and
I. Ya.
Yerukhimovich
,
Polym. Sci. USSR
28
,
2253
(
1986
).
33.
P. B.
Warren
,
Phys. Chem. Chem. Phys.
1
,
2197
2202
(
1999
).
34.
N.
Clarke
,
Eur. Phys. J. E
4
,
327
336
(
2001
).
35.
I.
Pagonabarraga
and
M.
Cates
,
Macromolecules
36
,
934
949
(
2003
).
36.
E. N.
Govorun
and
Y. V.
Kudryavtsev
,
Polym. Sci., Ser. A
46
,
553
564
(
2004
).
37.
A. V.
Berezkin
and
Y. V.
Kudryavtsev
,
J. Chem. Phys.
139
,
154102
(
2013
).
38.
R.
Nadler
and
S.
Srebnik
,
J. Membr. Sci.
315
,
100
(
2008
).
39.
R.
Oizerovich-Honig
,
V.
Raim
, and
S.
Srebnik
,
Langmuir
26
,
299
(
2010
).
40.
P.
Meakin
and
J. M.
Deutch
,
J. Chem. Phys.
80
,
2115
(
1984
).
41.
R. B.
Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
,
Transport Phenomena
, 2nd ed. (
John Wiley & Sons
,
New York
,
2007
).
42.
V.
Freger
,
Langmuir
21
,
1884
(
2005
).
43.
A. V.
Berezkin
and
Y. V.
Kudryavtsev
,
Macromolecules
44
,
112
(
2011
).
44.
D. V.
Guseva
,
Y. V.
Kudryavtsev
, and
A. V.
Berezkin
,
J. Chem. Phys.
135
,
204904
(
2011
).
45.
A. V.
Berezkin
,
D. V.
Guseva
, and
Y. V.
Kudryavtsev
,
Macromolecules
45
,
8910
(
2012
).
46.
A. V.
Berezkin
and
Y. V.
Kudryavtsev
,
Macromolecules
46
,
5080
(
2013
).
47.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
,
Europhys. Lett.
19
,
155
(
1992
).
48.
J. M. V. A.
Koelman
and
P. J.
Hoogerbrugge
,
Europhys. Lett.
21
,
363
(
1993
).
49.
P.
Espanol
and
P. B.
Warren
,
Europhys. Lett.
30
,
191
(
1995
).
50.
R. D.
Groot
and
P. B.
Warren
,
J. Chem. Phys.
107
,
4423
(
1997
).
51.
G.
Besold
,
I.
Vattulainen
,
M.
Karttunen
, and
J. M.
Polson
,
Phys. Rev. E
62
,
R7611
(
2000
).
52.
A. D.
Litmanovich
,
N. A.
Platé
, and
Y. V.
Kudryavtsev
,
Prog. Polym. Sci.
27
,
915
(
2002
).
53.
C. W.
Macosko
,
H. K.
Jeon
, and
T. R.
Hoye
,
Prog. Polym. Sci.
30
,
939
(
2005
).
54.
D.
Poncelet
,
J. Membr. Sci.
50
,
249
(
1990
).
55.
M.
Tsige
and
G. S.
Grest
,
J. Phys.: Condens. Matter.
17
,
S4119
S4132
(
2005
).
You do not currently have access to this content.