Bidisperse melts of linear, entangled polymer chains were studied using dissipative particle dynamics. The entanglement constraints were mimicked with our newly developed slip-spring approach. The compositions cover blends with short matrix chains, slightly above the molecular entanglement weight as well as blends were both chain lengths exhibit distinct entangled dynamics at various weight fractions. The Struglinsky-Graessley parameter Gr, which is the ratio between the relaxation time of the long chains due to pure reptation and the relaxation time of the tube caused by constraint release, ranges between values high above and below unity. We compare our slip-spring model with simulations that use conventional generic polymer models where bond crossings are prevented by excluded-volume interactions and find fairly good agreement in terms of the mean squared displacement. However, the slip-spring approach requires only a fraction of the computational time, making large scale systems feasible. The dynamical interference of the two different chain lengths is discussed in terms of reptation and constraint release dynamics. For bidisperse melt compositions with Gr < 1.0 the relaxation time of the long chain component is not affected by constraint release. However, for compositions where constraint release is supposed to contribute significantly to the relaxation mechanism (Gr > 1.0), we find strong evidence that the long chains reptate inside a dilated tube whose diameter increases with an exponent of 1/2 towards lower weight fraction of the long chains. Furthermore we observe a linear relation between the relaxation time and weight fraction. Therefore, based on the relaxation times, our results support the validity of the tube dilation model as proposed by Doi et al. [Macromolecules 20, 1900–1906 (1987)].

1.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
USA
,
1986
).
2.
P. G.
de Gennes
, “
Reptation of a polymer chain in the presence of fixed obstacles
,”
J. Chem. Phys.
55
,
572
579
(
1971
).
3.
M.
Doi
, “
Explanation for the 3.4-power law for viscosity of polymeric liquids on the basis of the tube model
,”
J. Polym. Sci., Part B: Pol. Phys.
21
,
667
684
(
1983
).
4.
W. W.
Graessley
, “
Entangled linear, branched and network polymer systems—Molecular theories
,”
Adv. Polym. Sci.
47
,
67
117
(
1982
).
5.
C.-Y.
Liu
,
R.
Keunings
, and
C.
Bailly
, “
Do deviations from reptation scaling of entangled polymer melts result from single- or many-chain effects?
,”
Phys. Rev. Lett.
97
,
246001
(
2006
).
6.
S. T.
Milner
and
T. C. B.
McLeish
, “
Reptation and contour-length fluctuations in melts of linear polymers
,”
Phys. Rev. Lett.
81
,
725
728
(
1998
).
7.
M.
Doi
,
W. W.
Graessley
,
E.
Helfand
, and
D. S.
Pearson
, “
Dynamics of polymers in polydisperse melts
,”
Macromolecules
20
,
1900
1906
(
1987
).
8.
G.
Marrucci
, “
Relaxation by reptation and tube enlargement: A model for polydisperse polymers
,”
J. Polym. Sci., Part B: Pol. Phys.
23
,
159
177
(
1985
).
9.
J. L.
Viovy
,
M.
Rubinstein
, and
R. H.
Colby
, “
Constraint release in polymer melts: Tube reorganization versus tube dilation
,”
Macromolecules
24
,
3587
3596
(
1991
).
10.
R. C.
Picu
and
A.
Rakshit
, “
Coarse grained model of diffusion in entangled bidisperse polymer melts
,”
J. Chem. Phys.
127
,
144909
(
2007
).
11.
Z.
Wang
and
R. G.
Larson
, “
Constraint release in entangled binary blends of linear polymers: A molecular dynamics study
,”
Macromolecules
41
,
4945
4960
(
2008
).
12.
K.
Kremer
and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A moleculardynamics simulation
,”
J. Chem. Phys.
92
,
5057
5086
(
1990
).
13.
R. D.
Groot
and
P. B.
Warren
, “
Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation
,”
J. Chem. Phys.
107
,
4423
4435
(
1997
).
14.
N. A.
Spenley
, “
Scaling laws for polymers in dissipative particle dynamics
,”
Europhys. Lett.
49
,
534
540
(
2000
).
15.
G.
Pan
and
C. W.
Manke
, “
Developments toward simulation of entangled polymer melts by dissipative particle dynamics (DPD)
,”
Int. J. Mod. Phys. B
17
,
231
235
(
2003
).
16.
J. T.
Padding
and
W. J.
Briels
, “
Uncrossability constraints in mesoscopic polymer melt simulations: Non-Rouse behavior of C120H242
,”
J. Chem. Phys.
115
,
2846
2859
(
2001
).
17.
M.
Langeloth
,
Y.
Masubuchi
,
M. C.
Böhm
, and
F.
Müller-Plathe
, “
Recovering the reptation dynamics of polymer melts in dissipative particle dynamics simulations via slipsprings
,”
J. Chem. Phys.
138
,
104907
(
2013
).
18.
Y.
Masubuchi
,
J.
Takimoto
,
K.
Koyama
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
, “
Brownian simulations of a network of reptating primitive chains
,”
J. Chem. Phys.
115
,
4387
4394
(
2001
).
19.
Y.
Masubuchi
,
H.
Watanabe
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
, “
Comparison among slip-link simulations of bidisperse linear polymer melts
,”
Macromolecules
41
,
8275
8280
(
2008
).
20.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
, “
Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics
,”
Europhys. Lett.
19
,
155
160
(
1992
).
21.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
(
Academic
,
London
,
2002
).
22.
V. C.
Chappa
,
D. C.
Morse
,
A.
Zippelius
, and
M.
Müller
, “
Translationally invariant slip-spring model for entangled polymer dynamics
,”
Phys. Rev. Lett.
109
,
148302
(
2012
).
23.
T.
Uneyama
and
Y.
Masubuchi
, “
Multi-chain slip-spring model for entangled polymer dynamics
,”
J. Chem. Phys.
137
,
154902
(
2012
).
24.
A.
Ramírez-Hernández
,
M.
Müller
, and
J. J.
de Pablo
, “
Theoretically informed entangled polymer simulations: linear and non-linear rheology of melts
,”
Soft Matter
9
,
2030
2036
(
2013
).
25.
P.
Español
and
P.
Warren
, “
Statistical mechanics of dissipative particle dynamics
,”
Europhys. Lett.
30
,
191
196
(
1995
).
26.
M.
Pütz
,
K.
Kremer
, and
G. S.
Grest
, “
What is the entanglement length in a polymer melt?
,”
Europhys. Lett.
49
,
735
741
(
2000
).
27.
S.
Wang
,
E. D.
von Meerwall
,
S.-Q.
Wang
,
A.
Halasa
,
W.-L.
Hsu
,
J. P.
Zhou
, and
R. P.
Quirk
, “
Diffusion and rheology of binary polymer mixtures
,”
Macromolecules
37
,
1641
1651
(
2004
).
28.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
USA
,
2003
).
29.
A. E.
Likhtman
,
M. S.
Talib
,
B.
Vorselaars
, and
J.
Ramirez
, “
Determination of tube theory parameters using a simple grid model as an example
,”
Macromolecules
46
,
1187
1200
(
2013
).
30.
V. R.
Raju
,
E. V.
Menezes
,
G.
Marin
,
W. W.
Graessley
, and
L. J.
Fetters
, “
Concentration and molecular weight dependence of viscoelastic properties in linear and star polymers
,”
Macromolecules
14
,
1668
1676
(
1981
).
31.
D.
Auhl
,
P.
Chambon
,
T. C. B.
McLeish
, and
D. J.
Read
, “
Elongational flow of blends of long and short polymers: Effective stretch relaxation time
,”
Phys. Rev. Lett.
103
,
136001
(
2009
).
32.
H.
Watanabe
,
S.
Ishida
,
Y.
Matsumiya
, and
T.
Inoue
, “
Test of full and partial tube dilation pictures in entangled blends of linear polyisoprenes
,”
Macromolecules
37
,
6619
6631
(
2004
).
33.
R. H.
Colby
and
M.
Rubinstein
, “
Two-parameter scaling for polymers in Θ solvents
,”
Macromolecules
23
,
2753
2757
(
1990
).
34.
E.
van Ruymbeke
,
Y.
Masubuchi
, and
H.
Watanabe
, “
Effective value of the dynamic dilution exponent in bidisperse linear polymers: from 1 to 4/3
,”
Macromolecules
45
,
2085
2098
(
2012
).
35.
R. J. A.
Steenbakkers
,
C.
Tzoumanekas
,
Y.
Li
,
W. K.
Liu
,
M.
Kröger
, and
J. D.
Schieber
, “
Primitive-path statistics of entangled polymers: mapping multi-chain simulations onto single-chain mean-field models
,”
New J. Phys.
16
,
015027
(
2014
).
36.
S. T.
Milner
, “
Predicting the tube diameter in melts and solutions
,”
Macromolecules
38
,
4929
4939
(
2005
).
37.
H.
Watanabe
and
T.
Kotaka
, “
Viscoelastic properties and relaxation mechanisms of binary blends of narrow molecular weight distribution polystyrenes
,”
Macromolecules
17
,
2316
2325
(
1984
).
38.
S.
Wang
,
S.-Q.
Wang
,
A.
Halasa
, and
W.-L.
Hsu
, “
Relaxation dynamics in mixtures of long and short chains: Tube dilation and impeded curvilinear diffusion
,”
Macromolecules
36
,
5355
5371
(
2003
).
You do not currently have access to this content.