In this article, we use cooling-rate dependent Tg measurements (CR-Tg) to indirectly probe the relaxation dynamics of supported polystyrene thin films of various molecular weights, all chosen to be above the entanglement molecular weight. We show that the dynamics in these films deviate from bulk dynamics below a temperature T* = Tg + 6 K = 380  K ± 1  K. We show that T* for films of all thicknesses and molecular weights is the same as the temperature at which the free surface dynamics deviate from the bulk dynamics. The apparent activation barrier of the glass transition in thin films decreases towards that of the free surface as the film thickness decreases. This provides strong evidence that thin film dynamics are facilitated by the enhanced mobility at the free surface. The observation of T* can help resolve some seemingly contradictory data by suggesting that studies performed at higher temperatures (T > T*), or which probe shorter relaxation times (τ < τ* ∼ 1 s) would not observe properties that deviate from bulk values. We also demonstrate that the relaxation dynamics of supported entangled polystyrene films slow down slightly as the molecular weight of polystyrene increases. An eight nanometer film of Mw =2240 kg/mol polystyrene shows a Tg reduction of 27 K at a cooling rate of 1 K/min, while a film of the same thickness made of Mw =45.8 kg/mol polystyrene has a 36 K reduction of Tg compared to the bulk film at the same cooling rate. We hypothesize this is either due to the density of a dynamically “dead” layer near the substrate increasing with molecular weight, or partial anchoring of long chains, which could hinder segmental diffusion near the free surface.

1.
J. L.
Keddie
,
R. A. L.
Jones
, and
R. A.
Cory
,
Europhys. Lett.
27
,
57
(
1994
).
2.
J. A.
Forrest
,
K. D.
Veress
, and
J. R.
Dutcher
,
Phys. Rev. E
56
,
5705
(
1997
).
3.
J. A.
Forrest
and
J.
Mattson
,
J. Phys. Rev. E
61
,
R53
(
2000
).
4.
J. S.
Sharp
and
J. A.
Forrest
,
Phys. Rev. Lett.
91
,
235701
(
2003
).
5.
C. J.
Ellison
and
J. M.
Torkelson
,
Nat. Mater.
2
,
695
(
2003
).
6.
Z.
Fakhraai
,
J. S.
Sharp
, and
J. A.
Forrest
,
J. Polym. Sci., B: Polym. Phys.
42
,
4503
(
2004
).
7.
C. J.
Ellison
,
S. D.
Kim
,
D. B.
Hall
, and
J. M.
Torkelson
,
Euro. Phys. J. E
8
,
155
(
2002
).
8.
Z.
Yang
,
Y.
Fuji
,
F. K.
Lee
,
C. H.
Lam
, and
O. K. C.
Tsui
,
Science
328
,
1676
(
2010
).
9.
C. J.
Ellison
,
M. K.
Mundra
, and
J. M.
Torkelson
,
Macromolecules
38
,
1767
(
2005
).
10.
O. K. C.
Tsui
and
H. F.
Zhang
,
Macromolecules
34
,
9139
(
2001
).
11.
C. B.
Roth
and
J. R.
Dutcher
,
J. Electroanal. Chem.
584
,
13
(
2005
).
12.
F.
Varnik
,
J.
Baschnagel
, and
K.
Binder
,
Phys. Rev. E
65
,
021507
(
2002
).
13.
S.
Peter
,
H.
Meyer
, and
J.
Baschnagel
,
J. Polym. Sci., B: Polym. Phys.
44
,
2951
(
2006
).
14.
A.
Shavit
and
R. A.
Riggleman
,
Macromolecules
46
,
5044
(
2013
).
15.
K. L.
Ngai
,
Euro. Phys. J. E
8
,
225
(
2002
).
16.
C. M.
Stafford
,
B. D.
Vogt
,
C.
Harrison
,
D.
Julthongpiput
, and
R.
Huang
,
Macromolecules
39
,
5095
5099
(
2006
).
17.
P.
O’Connell
and
G.
McKenna
,
Euro. Phys. J. E
20
,
143
(
2006
).
18.
M. D.
Ediger
and
J. A.
Forrest
,
Macromolecules
47
,
471
(
2014
).
19.
A.
Serghei
,
H.
Huth
,
C.
Schick
, and
F.
Kremer
,
Macromolecules
41
,
3636
(
2008
).
20.
H.
Huth
,
A. A.
Minakov
, and
C.
Schick
,
Polym. Sci., B: Polym. Phys.
44
,
2996
(
2006
).
21.
M.
Tress
,
E. U.
Mapesa
,
W.
Kossack
,
W. K.
Kipnusu
,
M.
Reiche
, and
F.
Kremer
,
Science
341
,
1371
(
2013
).
22.
V. M.
Boucher
,
D.
Cangialosi
,
H.
Yin
,
A.
Schonhals
,
A.
Alegria
, and
J.
Colmenero
,
Soft Matter
8
,
5119
(
2012
).
23.
M. Y.
Efremov
,
E. A.
Olson
,
M.
Zhang
,
Z.
Zhang
, and
L. H.
Allen
,
Phys. Rev. Lett.
91
,
085703
(
2003
).
24.
D.
Qi
,
M.
Ilton
, and
J.
Forrest
,
Euro. Phys. J. E
34
,
1
(
2011
).
25.
J. H.
Teichroeb
and
J. A.
Forrest
,
Phys. Rev. Lett.
91
,
016104
(
2003
).
26.
Z.
Fakraai
and
J. A.
Forrest
,
Science
319
,
600
(
2008
).
27.
K.
Paeng
,
S. F.
Swallen
, and
M. D.
Ediger
,
J. Am. Chem. Soc.
133
,
8444
(
2011
).
28.
J. D.
Stevens
and
P. G.
Wolynes
,
J. Chem. Phys.
129
,
234514
(
2008
).
29.
P. Z.
Hanakata
,
J. F.
Douglas
, and
F. W.
Starr
,
Nat. Commun.
5
,
4163
(
2014
).
30.
C. B.
Roth
,
K. L.
McNerny
,
W. F.
Jager
, and
J. M.
Torkelson
,
Macromolecules
40
,
2568
(
2007
).
31.
R. D.
Priestley
,
C. J.
Ellison
,
L. J.
Broadbelt
, and
J. M.
Torkelson
,
Science
309
,
456
(
2005
).
32.
J. E.
Pye
,
K. A.
Rohald
,
E. A.
Baker
, and
C. B.
Roth
,
Macromolecules
43
,
8296
(
2010
).
33.
L. A. G.
Gray
,
S. W.
Yoon
,
W. A.
Pahner
,
J. E.
Davidheiser
, and
C. B.
Roth
,
Macromolecules
45
,
1701
1709
(
2012
).
34.
S.
Napolitano
and
M.
Wubbenhorst
,
Nat. Commun.
2
,
260
(
2011
).
35.
K.
Chen
and
K. S.
Schweizer
,
J. Chem. Phys.
126
,
014904
(
2007
).
36.
S.
Mirigian
and
K. S.
Schweizer
,
J. Chem. Phys.
141
,
161103
(
2014
).
37.
J. E.
Pye
and
C. B.
Roth
,
Phys. Rev. Lett.
107
,
235701
(
2011
).
38.
J.
Mattsson
,
J. A.
Forrest
, and
L.
Borjesson
,
Phys. Rev. E
62
,
5187
(
2000
).
39.
K. D.
Veress
,
J. A.
Forrest
,
C.
Murray
,
C.
Gigault
, and
J. R.
Dutcher
,
Phys. Rev. E
63
,
031801
(
2001
).
40.
K.
Fukao
and
Y.
Miyamotom
,
Phys. Rev. E
61
,
1743
(
2000
).
41.
K.
Fukao
and
Y.
Miyamoto
,
Phys. Rev. E
64
,
011803
(
2001
).
42.
D.
Qi
,
C. R.
Daley
,
Y.
Chai
, and
J. A.
Forrest
,
Soft Matter
9
,
8958
(
2013
).
43.
H.
Yin
,
D.
Cangialosi
, and
A.
Schonhals
,
Thermochimica Acta
566
,
186
(
2013
).
44.
Z.
Fakhraai
and
J. A.
Forrest
,
Phys. Rev. Lett.
95
,
025701
(
2005
).
45.
Y. P.
Koh
and
S. L.
Simon
,
J. Polym. Sci., B: Polym. Phys.
46
,
2741
(
2008
).
46.
See supplementary material at http://dx.doi.org/10.1063/1.4901512 for additional experimental parameters, for raw ellipsometry data (Fig. S1), for a typical temperature, thickness and MSE profile (Fig. S2), for a plot of Tg as a function of Mw (Fig. S3), for an example of a thickness vs. temperature data set with a broad Tg (Fig. S4), for bulk DSC data for 45.8 kg/mol and 2,240 kg/mol PS (Fig. S5), for Arrhenius plots containing all film thicknesses studied (Fig. S6), the unsmoothed data from Fig. 5 (Fig. S7), for a plot of apparent activation energy as a function of annealing time (Fig. S8), and for a plot of index of refraction as a function of Mw (Fig. S9).
47.
L. J.
Fetters
,
D. J.
Lohse
, and
S. T.
Milner
,
Macromolecules
32
,
6847
(
1999
).
48.
C. M.
Roland
and
R.
Casalini
,
J. Chem. Phys.
119
,
1838
(
2003
).
49.
A.
Dhinojwala
,
G. K.
Wong
, and
J.
Torkelson
,
J. Chem. Phys.
100
,
6046
(
1994
).
50.
C.
Zhang
,
V. M.
Boucher
,
D.
Cangialosi
, and
R. D.
Priestley
,
Polymer
54
,
230
(
2013
).
51.
L.
Zhu
,
C. W.
Brian
,
S. F.
Swallen
,
P. T.
Straus
,
M. D.
Ediger
, and
L.
Yu
,
Phys. Rev. Lett.
106
,
256103
(
2011
).
52.
C.
Brian
and
L.
Yu
,
J. Phys. Chem. A
117
,
13303
(
2013
).
53.
C. R.
Daley
,
Z.
Fakhraai
,
M. D.
Ediger
, and
J. A.
Forrest
,
Soft Matter
8
,
2006
(
2012
).
54.
S.
Kim
,
S. A.
Hewlett
,
C. B.
Roth
, and
J. M.
Torkelson
,
Euro. Phys. J. E
30
,
83
(
2009
).
55.
J. A.
Forrest
and
K.
Dalnoki-Veress
,
ACS Macro Lett.
3
,
310
(
2014
).
56.
E.
Gilynos
,
B.
Freiberg
,
H.
Oh
,
M.
Liu
,
D. W.
Gidley
, and
P. F.
Green
,
Phys. Rev. Lett.
106
,
128301
(
2011
).
57.
S.
Butler
and
P.
Harrowell
,
J. Chem. Phys.
95
,
4466
(
1991
).
58.
J. C.
Dyre
,
N. B.
Olsen
, and
T.
Christensen
,
Phys. Rev. B
53
,
2171
(
1996
).
59.
S.
Napolitano
,
S.
Capponi
, and
B.
Vanroy
,
Euro Phys J. E
36
,
1
(
2013
).
60.
Y.
Chai
,
T.
Slaez
,
J. D.
McGraw
,
M.
Benzquen
,
K.
Dalnoki-Veress
,
E.
Raphael
, and
J. A.
Forrest
,
Science
343
,
994
(
2014
).
61.
D.
Qi
,
Z.
Fakhraai
, and
J. A.
Forrest
,
Phys. Rev. Lett.
101
,
096101
(
2008
).

Supplementary Material

You do not currently have access to this content.