Density functional/molecular dynamics simulations with more than 500 atoms have been performed on liquid bismuth at 573, 773, 923, and 1023 K and on neutral Bi clusters with up to 14 atoms. There are similar structural patterns (coordination numbers, bond angles, and ring patterns) in the liquid and the clusters, with significant differences from the rhombohedral crystalline form. We study the details of the structure (structure factor, pair, and cavity distribution functions) and dynamical properties (vibration frequencies, diffusion constants, power spectra), and compare with experimental results where available. While the three short covalent bonds typical to pnictogens are characteristic in both liquid and clusters, the number of large voids and the total cavity volume is much larger in the liquid at 1023 K, with larger local concentration variations. The inclusion of spin-orbit coupling results in a lowering of the cohesive energies in Bin clusters of 0.3–0.5 eV/atom.

1.
J.
Donohue
,
The Structures of the Elements
(
Wiley
,
New York
,
1974
), Chap. 8.
2.
J. C.
Jamieson
,
Science
139
,
1291
(
1963
).
3.
J.
Akola
,
R. O.
Jones
,
S.
Kohara
,
T.
Usuki
, and
E.
Bychkov
,
Phys. Rev. B
81
,
094202
(
2010
).
4.
J.
Akola
and
R. O.
Jones
,
Phys. Rev. B
85
,
134103
(
2012
).
5.
J. K.
Burdett
and
S.
Lee
,
J. Solid State Chem.
44
,
415
(
1982
).
6.
X.
Gonze
,
J.-P.
Michenaud
, and
J.-P.
Vigneron
,
Phys. Rev. B
41
,
11827
(
1990
).
7.
S. E.
Boulfelfel
,
G.
Seifert
,
Y.
Grin
, and
S.
Leoni
,
Phys. Rev. B
85
,
014110
(
2012
).
8.
H.
Jones
,
Proc. Phys. Soc., London, Sect. A
147
,
396
(
1934
).
9.
N. F.
Mott
and
H.
Jones
,
The Theory of the Properties of Metals and Alloys
(
Clarendon Press
,
Oxford
,
1936
), p.
166
.
10.
R.
Peierls
,
Quantum Theory of Solids
(
Clarendon Press
,
Oxford
,
1955
), p.
108
.
11.
M.
Mayo
,
E.
Yahel
,
Y.
Greenberg
, and
G.
Makov
,
J. Phys.: Condens. Matter
25
,
505102
(
2013
), and references therein.
12.
Y.
Katayama
,
T.
Mizutani
,
W.
Utsumi
,
O.
Shinomura
,
M.
Yamakata
, and
K.
Funakoshi
,
Nature (London)
403
,
170
(
2000
).
13.
G.
Monaco
,
S.
Falconi
,
W. A.
Crichton
, and
M.
Mezouar
,
Phys. Rev. Lett.
90
,
255701
(
2003
).
14.
M.
Mayo
,
E.
Yahel
,
Y.
Greenberg
,
E. N.
Caspi
,
B.
Beuneu
, and
G.
Makov
,
J. Appl. Crystallogr.
46
,
1582
(
2013
).
15.
Y.
Greenberg
,
E.
Yahel
,
E. N.
Caspi
,
C.
Benmore
,
B.
Beuneu
,
M. P.
Dariel
, and
G.
Makov
,
Europhys. Lett.
86
,
36004
(
2009
).
16.
K.
Shibata
,
S.
Hoshino
, and
H.
Fujishita
,
J. Phys. Soc. Jpn.
53
,
899
(
1984
).
17.
L.
Sani
,
L. E.
Bove
,
C.
Petrillo
, and
F.
Sacchetti
,
J. Non-Cryst. Solids
353
,
3139
(
2007
), and references therein.
18.
T. M.
Bernhardt
,
B.
Kaiser
, and
K.
Rademann
,
Phys. Chem. Chem. Phys.
4
,
1192
(
2002
).
19.
M. E.
Geusic
,
R. R.
Freeman
, and
M. A.
Duncan
,
J. Chem. Phys.
88
,
163
(
1988
).
20.
M. M.
Ross
and
S. W.
McElvany
,
J. Chem. Phys.
89
,
4821
(
1988
).
21.
V. E.
Bondybey
and
J. H.
English
,
J. Chem. Phys.
73
,
42
(
1980
), and references therein.
22.
M. L.
Polak
,
J.
Ho
,
G.
Gerber
, and
W. C.
Lineberger
,
J. Chem. Phys.
95
,
3053
(
1991
).
23.
C. A.
Arrington
and
M. D.
Morse
,
J. Phys. Chem. B
112
,
16182
(
2008
).
24.
S.
Yin
,
X.
Xu
,
R.
Moro
, and
W. A.
de Heer
,
Phys. Rev. B
72
,
174410
(
2005
).
25.
J.
Hafner
and
W.
Jank
,
Phys. Rev. B
45
,
2739
(
1992
).
26.
P.
Ballone
and
R. O.
Jones
,
J. Chem. Phys.
121
,
8147
(
2004
).
27.
G. A.
de Wijs
,
G.
Pastore
,
A.
Selloni
, and
W.
van der Lugt
,
Phys. Rev. Lett.
75
,
4480
(
1995
).
28.
J.
Souto
,
M. M. G.
Alemany
,
L. J.
Gallego
,
L. E.
González
, and
D. J.
González
,
Phys. Rev. B
81
,
134201
(
2010
).
29.
P.
de Marcillac
,
N.
Coron
,
G.
Dambier
,
J.
Leblanc
, and
J.-P.
Moalic
,
Nature (London)
422
,
876
(
2003
).
30.
K.
Balasubramanian
and
D.-W.
Liao
,
J. Chem. Phys.
95
,
3064
(
1991
).
31.
K. K.
Das
,
H.-P.
Liebermann
,
R. J.
Buenker
, and
G.
Hirsch
,
J. Chem. Phys.
102
,
4518
(
1995
).
32.
K.
Balasubramanian
,
K.
Sumathi
, and
D.
Dai
,
J. Chem. Phys.
95
,
3494
(
1991
).
33.
H.
Choi
,
C.
Park
, and
K. K.
Baeck
,
J. Phys. Chem. A
106
,
5177
(
2002
).
34.
M.
Gausa
,
R.
Kaschner
,
G.
Seifert
,
J. H.
Faehrmann
,
H. O.
Lutz
, and
K.-H.
Meiwes-Broer
,
J. Chem. Phys.
104
,
9719
(
1996
).
35.
H. K.
Yuan
,
H.
Chen
,
A. L.
Kuang
,
Y.
Miao
, and
Z. H.
Xiong
,
J. Chem. Phys.
128
,
094305
(
2008
).
36.
L.
Giao
,
P.
Li
,
H.
Lu
,
S. F.
Li
, and
Z. X.
Guo
,
J. Chem. Phys.
128
,
194304
(
2008
).
37.
J. M.
Jia
,
G. B.
Chen
,
D. N.
Shi
, and
B. L.
Wang
,
Eur. Phys. J. D
47
,
359
(
2008
).
38.
R.
Kelting
,
A.
Baldes
,
U.
Schwarz
,
T.
Rapps
,
D.
Schooss
,
P.
Weis
,
C.
Neiss
,
F.
Weigend
, and
M. M.
Kappes
,
J. Chem. Phys.
136
,
154309
(
2012
).
39.
R. O.
Jones
and
D.
Hohl
,
J. Chem. Phys.
92
,
6710
(
1990
).
40.
R. O.
Jones
and
G.
Seifert
,
J. Chem. Phys.
96
,
7564
(
1992
).
41.
P.
Ballone
and
R. O.
Jones
,
J. Chem. Phys.
100
,
4941
(
1994
).
42.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
);
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
43.
D.
Hohl
and
R. O.
Jones
,
Phys. Rev. B
50
,
17047
(
1994
).
44.
CPMD V3.15 ©IBM Corp 1990–2011, ©MPI für Festkörperforschung Stuttgart 1997–2001, see http://www.cpmd.org.
45.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
46.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
47.
S. G.
Louie
,
S.
Froyen
, and
M. L.
Cohen
,
Phys. Rev. B
26
,
1738
(
1982
).
48.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
,
Phys. Rev. Lett.
100
,
136406
(
2008
).
49.
M. J.
Assael
,
A. E.
Kalyva
,
K. D.
Antoniadis
,
R. M.
Banish
,
I.
Egry
,
J.
Wu
,
E.
Kaschnitz
, and
W. A.
Wakeham
,
High Temp. – High Pressures
41
,
161
(
2012
).
50.
S.
Kohara
, private communication (
2011
).
51.
ISAACS program,
S.
Le Roux
and
V.
Petkov
,
J. Appl. Crystallgr.
43
,
181
(
2010
).
52.
J.
Akola
and
R. O.
Jones
,
Phys. Rev. B
76
,
235201
(
2007
).
53.
J.
Akola
and
R. O.
Jones
,
Phys. Rev. Lett.
100
,
205502
(
2008
).
54.
See supplementary material at http://dx.doi.org/10.1063/1.4901525 for figures of 33 structures not shown here, coordinates of all 58 structures, the distributions of bond angles (at 1023 K), and effective coordination numbers (573 K and 1023 K).
55.
G.
Gerber
and
H. P.
Broida
,
J. Chem. Phys.
64
,
3423
(
1976
).
56.
F. J.
Kohl
,
O. M.
Uy
, and
K. D.
Carlson
,
J. Chem. Phys.
47
,
2667
(
1967
).
57.
J.
Hirschfeld
and
H.
Lustfeld
,
Phys. Rev. E
85
,
056709
(
2012
).
58.
Cohesive energy from
R.
Hultgren
,
P. D.
Desai
,
D. T.
Hawkins
,
M.
Gleiser
,
K. K.
Kelley
, and
D. G.
Wagman
,
Selected Values of the Thermodynamic Properties of the Elements
(
American Society for Metals
,
Metals Park, OH
,
1973
), p.
73
.
59.
R. O.
Jones
and
P.
Ballone
,
J. Chem. Phys.
118
,
9257
(
2003
).
60.
J. L.
Yarnell
,
J. L.
Warren
,
R. G.
Wenzel
, and
S. H.
König
,
IBM J. Res. Dev.
8
,
234
(
1964
).
61.
J.
Höhne
,
U.
Wenning
,
H.
Schulz
, and
S.
Hüfner
,
Z. Phys. B
27
,
297
(
1977
).
62.
See, for example,
K.
Balasubramanian
and
K. S.
Pitzer
, in
Ab Initio Methods in Quantum Chemistry. I
,
Advances in Chemical Physics
, edited by
K. P.
Lawley
(
Wiley
,
New York
,
1987
), Vol.
67
, p.
287
.
63.
K.
Balasubramanian
and
K. S.
Pitzer
,
J. Chem. Phys.
78
,
321
(
1983
).
64.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
65.
K.
Balasubramanian
,
Mol. Phys.
107
,
797
(
2009
).
66.
J. L. F.
Da Silva
,
J. Appl. Phys.
109
,
023502
(
2011
).
67.
See, for example,
G.
Döge
,
Z. Naturforsch. A
20
,
634
(
1965
).
68.
See, for example,
X.
Gonze
,
J.-P.
Michenaud
, and
J.-P.
Vigneron
,
Phys. Scr.
37
,
785
(
1988
).
69.
L.
Ley
,
R. A.
Pollak
,
S. P.
Kowalczyk
,
R.
McFeely
, and
D. A.
Shirley
,
Phys. Rev. B
8
,
641
(
1973
).

Supplementary Material

You do not currently have access to this content.