Lithium and magnesium exhibit rather different properties as battery anode materials with respect to the phenomenon of dendrite formation which can lead to short-circuits in batteries. Diffusion processes are the key to understanding structure forming processes on surfaces. Therefore, we have determined adsorption energies and barriers for the self-diffusion on Li and Mg using periodic density functional theory calculations and contrasted the results to Na which is also regarded as a promising electrode material in batteries. According to our calculations, magnesium exhibits a tendency towards the growth of smooth surfaces as it exhibits lower diffusion barriers than lithium and sodium, and as an hcp metal it favors higher-coordinated configurations in contrast to the bcc metals Li and Na. These characteristic differences are expected to contribute to the unequal tendencies of these metals with respect to dendrite growth.

1.
J.
Goodenough
,
J. Solid State Electrochem.
16
,
2019
(
2012
).
2.
B.
Kang
and
G.
Ceder
,
Nature
458
,
190
(
2009
).
3.
K.
Zaghib
,
J. B.
Goodenough
,
A.
Mauger
, and
C.
Julien
,
J. Power Sources
194
,
1021
(
2009
).
4.
G.
Ceder
and
B.
Kang
,
J. Power Sources
194
,
1024
(
2009
).
5.
J. H.
Pikul
,
H. G.
Zhang
,
J.
Cho
,
P. V.
Braun
, and
W. P.
King
,
Nat. Commun.
4
,
1732
(
2012
).
6.
N.
Hörmann
and
A.
Groß
,
J. Solid State Electrochem.
18
,
1401
(
2014
).
7.
J.
Christensen
,
P.
Albertus
,
R. S.
Sanchez-Carrera
,
T.
Lohmann
,
B.
Kozinsky
,
R.
Liedtke
,
J.
Ahmed
, and
A.
Kojic
,
J. Electrochem. Soc.
159
,
R1
(
2012
).
9.
W.-S.
Kim
and
W.-Y.
Yoon
,
Electrochim. Acta
50
,
541
(
2004
).
10.
K.
Nishikawa
,
T.
Mori
,
T.
Nishida
,
Y.
Fukunaka
,
M.
Rosso
, and
T.
Homma
,
J. Electrochem. Soc.
157
,
A1212
(
2010
).
11.
G.
Girishkumar
,
B.
McCloskey
,
A. C.
Luntz
,
S.
Swanson
, and
W.
Wilcke
,
J. Phys. Chem. Lett.
1
,
2193
(
2010
).
12.
A.
Schechter
and
D.
Aurbach
,
Langmuir
15
,
3334
(
1999
).
13.
Y. S.
Cohen
,
Y.
Cohen
, and
D.
Aurbach
,
J. Phys. Chem. B
104
,
12282
(
2000
).
14.
C.
Monroe
and
J.
Newman
,
J. Electrochem. Soc.
152
,
A396
(
2005
).
15.
Y.
Lu
,
Z.
Tu
, and
L. A.
Archer
,
Nat. Mater.
13
,
961
(
2014
).
16.
D.
Gunceler
,
K.
Letchworth-Weaver
,
R.
Sundararaman
,
K. A.
Schwarz
, and
T. A.
Arias
,
Modell. Simul. Mater. Sci. Eng.
21
,
074005
(
2013
).
17.
K. J.
Harry
,
D. T.
Hallinan
,
D. Y.
Parkinson
,
A. A.
MacDowell
, and
N. P.
Balsara
,
Nat. Mater.
13
,
69
(
2014
).
18.
P.
Novak
,
R.
Imhof
, and
O.
Haas
,
Electrochim. Acta
45
,
351
(
1999
).
19.
H. D.
Yoo
,
I.
Shterenberg
,
Y.
Gofer
,
G.
Gershinsky
,
N.
Pour
, and
D.
Aurbach
,
Energy Environ. Sci.
6
,
2265
(
2013
).
20.
R.
Mohtadi
and
F.
Mizuno
,
Beilstein J. Nanotechnol.
5
,
1291
(
2014
).
21.
Q. S.
Zhao
and
J. L.
Wang
,
Electrochim. Acta
56
,
6530
(
2011
).
22.
D.
Aurbach
,
Y.
Cohen
, and
M.
Moshkovich
,
Electrochem. Solid-State Lett.
4
,
A113
(
2001
).
23.
T. J.
Richardson
and
G.
Chen
,
J. Power Sources
174
,
810
(
2007
).
24.
S.
Schnur
and
A.
Groß
,
Catal. Today
165
,
129
(
2011
).
25.
M. Z.
Mayers
,
J. W.
Kaminski
, and
T. F.
Miller
,
J. Phys. Chem. C
116
,
26214
(
2012
).
26.
C.
Ling
,
D.
Banerjee
, and
M.
Matsui
,
Electrochim. Acta
76
,
270
(
2012
).
27.
T.
Michely
,
M.
Hohage
,
M.
Bott
, and
G.
Comsa
,
Phys. Rev. Lett.
70
,
3943
(
1993
).
28.
P.
Ruggerone
,
A.
Kley
, and
M.
Scheffler
,
Prog. Surf. Sci.
54
,
331
(
1997
).
30.
M. E.
Quayum
,
S.
Ye
, and
K.
Uosaki
,
J. Electroanal. Chem.
520
,
126
(
2002
).
31.
X.
Lin
,
A.
Dasgupta
,
F.
Xie
,
T.
Schimmel
,
F.
Evers
, and
A.
Groß
,
Electrochim. Acta
140
,
505
(
2014
).
32.
33.
B.
Dunn
,
H.
Kamath
, and
J.-M.
Tarascon
,
Science
334
,
928
(
2011
).
34.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
35.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
36.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
37.
A.
Groß
,
J. Comput. Theor. Nanosci.
5
,
894
(
2008
).
38.
A.
Groß
,
J. Phys.: Condens. Matter
21
,
084205
(
2009
).
39.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
40.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
41.
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
John Wiley & Sons
,
New York
,
2004
).
42.
K.
Doll
,
N. M.
Harrison
, and
V. R.
Saunders
,
J. Phys.: Condens. Matter
11
,
5007
(
1999
).
43.
I.
Baraille
,
C.
Pouchan
,
M.
Causà
, and
F.
Marinelli
,
J. Phys.: Condens. Matter
10
,
10969
(
1998
).
44.
W.
Köster
and
H.
Franz
,
Int. Mater. Rev.
6
,
1
(
1961
).
45.
E.
Wachowicz
and
A.
Kiejna
,
J. Phys.: Condens. Matter
13
,
10767
(
2001
).
46.
C.
Fiolhais
and
L. M.
Almeida
,
Int. J. Quantum Chem.
101
,
645
(
2005
).
47.
A.
Groß
,
Theoretical Surface Science – A Microscopic Perspective
, 2nd ed. (
Springer
,
Berlin
,
2009
).
48.
L.
Vitos
,
A. V.
Ruban
,
H. L.
Skriver
, and
J.
Kollár
,
Surf. Sci.
411
,
186
(
1998
).
49.
J. A.
Venables
,
Phys. Rev. B
36
,
4153
(
1987
).
50.
G. L.
Kellogg
and
P. J.
Feibelman
,
Phys. Rev. Lett.
64
,
3143
(
1990
).
51.
C.
Chen
and
T. T.
Tsong
,
Phys. Rev. Lett.
64
,
3147
(
1990
).
52.
P. J.
Feibelman
,
Phys. Rev. Lett.
65
,
729
(
1990
).
53.
R.
Stumpf
and
M.
Scheffler
,
Phys. Rev. B
53
,
4958
(
1996
).
54.
G.
Ehrlich
and
F. G.
Hudda
,
J. Chem. Phys.
44
,
1039
(
1966
).
55.
R. L.
Schwoebel
and
E. J.
Shipsey
,
J. Appl. Phys.
37
,
3682
(
1966
).
56.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
57.
S.
Sakong
,
C.
Mosch
,
A.
Lozano
,
H. F.
Busnengo
, and
A.
Groß
,
ChemPhysChem
13
,
3467
(
2012
).
58.
A. F.
Voter
,
Phys. Rev. B
34
,
6819
(
1986
).
59.
C.
Sendner
and
A.
Groß
,
J. Chem. Phys.
127
,
014704
(
2007
).
60.
K. A.
Fichthorn
and
W. H.
Weinberg
,
J. Chem. Phys.
95
,
1090
(
1991
).
You do not currently have access to this content.