For conical intersections of two states (I,J = I + 1) the vectors defining the branching or g-h plane, the energy difference gradient vector gI,J, and the interstate coupling vector hI,J, can be made orthogonal by a one parameter rotation of the degenerate electronic eigenstates. The representation obtained from this rotation is used to construct the parameters that describe the vicinity of the conical intersection seam, the conical parameters, sI,Jx (R), sI,Jy (R), gI,J(R), and hI,J(R). As a result of the orthogonalization these parameters can be made continuous functions of R, the internuclear coordinates. In this work we generalize this notion to construct continuous parametrizations of conical intersection seams of three or more states. The generalization derives from a recently introduced procedure for using non-degenerate electronic states to construct coupled diabatic states that represent adiabatic states coupled by conical intersections. The procedure is illustrated using the seam of conical intersections of three states in parazolyl as an example.

1.
K. A.
Kistler
and
S.
Matsika
,
J. Chem. Phys.
128
,
215102
(
2008
).
2.
S.
Matsika
, in
Conical Intersections, Theory, Computation and Experiment
, edited by
W.
Domcke
,
D.
Yarkony
, and
H.
Köppel
(
World Scientific
,
Singapore
,
2011
).
3.
S.
Matsika
,
J. Phys. Chem. A.
109
,
7538
(
2005
).
4.
S.
Matsika
and
D. R.
Yarkony
,
J. Chem. Phys.
117
,
6907
(
2002
).
5.
S.
Matsika
and
D. R.
Yarkony
,
J. Am. Chem. Soc.
125
,
12428
(
2003
).
6.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
124
,
124109
(
2006
).
7.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
124
,
244103
(
2006
).
8.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Phys. Chem. B.
110
,
19031
(
2006
).
9.
S.
Han
and
D. R.
Yarkony
,
J. Chem. Phys.
119
, 1
1561
(
2003
).
10.
J. D.
Coe
and
T. J.
Martinez
,
J. Am. Chem. Soc.
127
,
4560
(
2005
).
11.
J. D.
Coe
and
T. J.
Martínez
,
J. Phys. Chem. A
110
,
618
(
2006
).
12.
J.
Gonzalez-Vazquez
and
L.
Gonzalez
,
ChemPhysChem
11
,
3617
(
2010
).
13.
P.
Krause
and
S.
Matsika
,
J. Chem. Phys.
136
,
034110
(
2012
).
14.
S.
Matsika
and
D. R.
Yarkony
,
J. Am. Chem. Soc.
125
,
10672
(
2003
).
15.
H. C.
Longuet-Higgins
,
Proc. R. Soc. London A
344
,
147
(
1975
).
16.
S. P.
Keating
and
C. A.
Mead
,
J. Chem. Phys.
82
,
5102
(
1985
).
17.
D. E.
Manolopoulos
and
M. S.
Child
,
Phys. Rev. Lett.
82
,
2223
(
1999
).
18.
J.
Samuel
and
A.
Dhar
,
Phys. Rev. Lett.
87
,
260401
(
2001
).
19.
G. J.
Atchity
,
S. S.
Xantheas
, and
K.
Ruedenberg
,
J. Chem. Phys.
95
,
1862
(
1991
).
20.
D. R.
Yarkony
,
J. Chem. Phys.
112
,
2111
(
2000
).
21.
D. R.
Yarkony
,
J. Chem. Phys.
114
,
2601
(
2001
).
22.
X.
Zhu
and
D. R.
Yarkony
,
Mol. Phys.
108
,
2611
(
2010
).
23.
D. R.
Yarkony
,
Faraday Discuss.
127
,
325
(
2004
).
24.
T.
Ichino
,
A. J.
Gianola
,
W. C.
Lineberger
, and
J. F.
Stanton
,
J. Chem. Phys.
125
,
084312
(
2006
).
25.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys
129
,
064304
(
2008
).
26.
D. R.
Yarkony
,
J. Phys. Chem. A
101
,
4263
(
1997
).
27.
C. A.
Mead
,
J. Chem. Phys.
78
,
807
(
1983
).
28.
X.
Zhu
and
D. R.
Yarkony
,
J. Chem. Phys.
140
,
024112
(
2014
).
29.
B.
Lasorne
,
Adv. Math. Phys.
2014
,
795730
(
2014
).
30.
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
31.
H.
Lischka
,
M.
Dallos
,
P.
Szalay
,
D. R.
Yarkony
, and
R.
Shepard
,
J. Chem. Phys.
120
,
7322
(
2004
).
32.
M.
Dallos
,
H.
Lischka
,
P.
Szalay
,
R.
Shepard
, and
D. R.
Yarkony
,
J. Chem. Phys.
120
,
7330
(
2004
).
33.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
,
R.
Pitzer
,
M.
Dallos
,
T.
Müller
,
P. G.
Szalay
,
F. B.
Brown
,
R.
Alhrichs
,
H. J.
Böhm
,
A.
Chang
,
D. C.
Comeau
,
R.
Gdanitz
,
H.
Dachsel
,
C.
Erhard
,
M.
Ernzerhof
,
P.
Höchtl
,
S.
Irle
,
G.
Kedziora
,
T.
Kovar
,
V.
Parasuk
,
M.
Pepper
,
P.
Scharf
,
H.
Schiffer
,
M.
Schindler
,
M.
Schüler
, and
J.-G.
Zhao
, COLUMBUS, An ab initio Electronic Structure Program,
2003
.
You do not currently have access to this content.