Reactions involving N and O atoms dominate the energetics of the reactive air flow around spacecraft when reentering the atmosphere in the hypersonic flight regime. For this reason, the thermal rate coefficients for reactive processes involving O(3P) and NO(2Π) are relevant over a wide range of temperatures. For this purpose, a potential energy surface (PES) for the ground state of the NO2 molecule is constructed based on high-level ab initio calculations. These ab initio energies are represented using the reproducible kernel Hilbert space method and Legendre polynomials. The global PES of NO2 in the ground state is constructed by smoothly connecting the surfaces of the grids of various channels around the equilibrium NO2 geometry by a distance-dependent weighting function. The rate coefficients were calculated using Monte Carlo integration. The results indicate that at high temperatures only the lowest A-symmetry PES is relevant. At the highest temperatures investigated (20 000 K), the rate coefficient for the “O1O2+N” channel becomes comparable (to within a factor of around three) to the rate coefficient of the oxygen exchange reaction. A state resolved analysis shows that the smaller the vibrational quantum number of NO in the reactants, the higher the relative translational energy required to open it and conversely with higher vibrational quantum number, less translational energy is required. This is in accordance with Polanyi's rules. However, the oxygen exchange channel (NO2+O1) is accessible at any collision energy. Finally, this work introduces an efficient computational protocol for the investigation of three-atom collisions in general.

1.
K.
Yoshino
,
J.
Esmond
, and
W.
Parkinson
,
Chem. Phys.
221
,
169
174
(
1997
).
2.
W.
Schneider
,
G.
Moortgat
,
G.
Tyndall
, and
J.
Burrows
,
J. Photochem. Photobiol. A
40
,
195
217
(
1987
).
3.
T.
Corcoran
,
E.
Beiting
, and
M.
Mitchell
,
J. Mol. Spectrosc.
154
,
119
128
(
1992
).
4.
U.
Platt
,
D.
Perner
,
G.
Harris
,
A.
Winer
, and
J.
Pitts
,
Nature (London)
285
,
312
314
(
1980
).
5.
B.
Finlayson-Pitts
,
L.
Wingen
,
A.
Sumner
,
D.
Syomin
, and
K.
Ramazan
,
Phys. Chem. Chem. Phys.
5
,
223
242
(
2003
).
6.
J.
Calvert
,
G.
Yarwood
, and
A.
Dunker
,
Res. Chem. Intermed.
20
,
463
502
(
1994
).
7.
T.
Schwartzentruber
,
L.
Scalabrin
, and
I.
Boyd
,
J. Spacecraft Rockets
45
,
1196
1206
(
2008
).
8.
S.
Mishra
and
M.
Meuwly
,
Kinetics and Dynamics: From Nano- to Bio-Scale
,
Challenges and Advances in Computational Chemistry and Physics
Vol.
12
(
Springer
,
Berlin
,
2010
).
9.
R. B.
Gerber
,
V.
Buch
, and
M. A.
Ratner
,
J. Chem. Phys.
77
,
3022
3030
(
1982
).
10.
M.
Beck
,
A.
Jäckle
,
G.
Worth
, and
H. D.
Meyer
,
Phys. Rep.
324
,
1
105
(
2000
).
11.
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
119
,
1289
1299
(
2003
).
12.
T.
Nagy
,
J.
Yosa Reyes
, and
M.
Meuwly
,
J. Chem. Theory Comput.
10
,
1366
1375
(
2014
).
13.
V.
Kurkal
,
P.
Fleurat-Lessard
, and
R.
Schinke
,
J. Chem. Phys.
119
,
1489
1501
(
2003
).
14.
R.
Jost
,
J.
Nygrd
,
A.
Pasinski
, and
A.
Delon
,
J. Chem. Phys.
105
,
1287
1290
(
1996
).
15.
W.
Bowman
and
F.
De Lucia
,
J. Chem. Phys.
77
,
92
107
(
1982
).
16.
M.
Ivanov
,
H.
Zhu
, and
R.
Schinke
,
J. Chem. Phys.
126
,
054304
(
2007
).
17.
L.
Harding
,
H.
Stark
,
J.
Troe
, and
V.
Ushakov
,
Phys. Chem. Chem. Phys.
1
,
63
72
(
1999
).
18.
H.
Hippler
,
M.
Siefke
,
H.
Stark
, and
J.
Troe
,
Phys. Chem. Chem. Phys.
1
,
57
61
(
1999
).
19.
V.
Wakelam
,
I.
Smith
,
E.
Herbst
,
J.
Troe
,
W.
Geppert
,
H.
Linnartz
,
K.
Öberg
,
E.
Roueff
,
M.
Agndez
,
P.
Pernot
,
H.
Cuppen
,
J.
Loison
, and
D.
Talbi
,
Space Sci. Rev.
156
,
13
72
(
2010
).
20.
D.
Angeli
,
Eur. J. Control
15
,
398
406
(
2009
).
21.
D. T.
Gillespie
,
Annu. Rev. Phys. Chem.
58
,
35
55
(
2007
).
22.
D. T.
Gillespie
,
J. Phys. Chem.
81
,
2340
2361
(
1977
).
23.
D. T.
Gillespie
,
J. Comput. Phys.
22
,
403
434
(
1976
).
24.
W.
Vance
,
A.
Arkin
, and
J.
Ross
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
5816
5821
(
2002
).
25.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
1023
(
1989
).
26.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
6806
(
1992
).
27.
H.
Wener
and
P.
Knowles
,
J. Chem. Phys.
82
,
5053
5063
(
1985
).
28.
S. R.
Langhoff
and
E.
Davidson
,
Int. J. Quantum Chem.
8
,
61
72
(
1974
).
29.
W.
Duch
and
G. H. F.
Diercksen
,
J. Chem. Phys.
101
,
3018
3030
(
1994
).
30.
H. J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
WIREs Comput. Mol. Sci.
2
,
242
253
(
2012
).
31.
J.
Vanderslice
,
E.
Mason
, and
W.
Maisch
,
J. Chem. Phys.
31
,
738
746
(
1959
).
32.
J.
Vanderslice
,
E.
Mason
,
W.
Maisch
, and
E.
Lippincott
,
J. Mol. Spectrosc.
3
,
17
29
(
1959
).
33.
D. D.
Konowalow
and
J. O.
Hirschfelder
,
Phys. Fluids
4
,
629
636
(
1961
).
34.
T. S.
Ho
and
H.
Rabitz
,
J. Chem. Phys.
104
,
2584
2597
(
1996
).
35.
M.
Meuwly
and
J.
Hutson
,
J. Chem. Phys.
110
,
3418
3427
(
1999
).
36.
D. S.
Watkins
,
Fundamentals of Matrix Computations
, 2nd ed. (
Wiley
,
New York
,
2002
).
37.
W.
Olver
,
D.
Lozier
,
R.
Boisvert
, and
C.
Clark
,
NIST Handbook of Mathematical Functions
(
Cambridge University Press
,
New York
,
2010
).
38.
P.
Soldan
and
J. M.
Hutson
,
J. Chem. Phys.
112
,
4415
4416
(
2000
).
39.
T.
Hollebeek
,
T.-S.
Ho
, and
H.
Rabitz
,
J. Chem. Phys.
106
,
7223
7227
(
1997
).
40.
K. K.
Irikura
,
J. Phys. Chem. Ref. Data
36
,
389
397
(
2007
).
41.
L.
Verlet
,
Phys. Rev.
159
,
98
103
(
1967
).
42.
R. L.
Liboff
,
Introductory Quantum Mechanics
, 4th ed. (
Addison-Wesley
,
Massachusetts
,
2003
).
43.
R. N.
Porter
,
L. M.
Raff
, and
W. H.
Miller
,
J. Chem. Phys.
63
,
2214
2218
(
1975
).
44.
R. D.
Levine
,
Molecular Reaction Dynamics
(
Cambridge University Press
,
Cambridge
,
2005
).
45.
M.
Brouard
,
Reaction Dynamics
,
Oxford Chemistry Primers
Vol.
61
(
Oxford Science Publications
,
Oxford
,
1998
).
46.
N. E.
Henriksen
and
F. Y.
Hansen
,
Theories of Molecular Reaction Dynamics: The Microscopic Foundation of Chemical Kinetics
,
Oxford Graduate Texts
(
Oxford University Press
,
Oxford
,
2012
).
47.
J.
Duff
and
R. D.
Sharma
,
J. Chem. Soc., Faraday Trans.
93
,
2645
2649
(
1997
).
48.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
London
,
2001
).
49.
See supplementary material at http://dx.doi.org/10.1063/1.4897263 for the test of the ab initio calculations and of the prediction abilities of the RKHS procedure.
50.
A.
Delon
and
R.
Jost
,
J. Chem. Phys.
95
,
5686
5700
(
1991
).
51.
R.
Georges
,
A.
Delon
, and
R.
Jost
,
J. Chem. Phys.
103
,
1732
1747
(
1995
).
52.
K. P.
Huber
and
G.
Herzberg
,
Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules
(
Van Nostrand
,
Princeton
,
1979
).
53.
J.
Troe
,
Ber. Bunseng. Phys. Chem.
73
,
144
147
(
1969
).
54.
M.
Rohrig
,
E. L.
Petersen
,
D. F.
Davidson
, and
R. K.
Hanson
,
Int. J. Chem. Kinet.
29
,
483
493
(
1997
).
55.
H.
Sabbah
,
L.
Biennier
,
I.
Sims
,
Y.
Georgievskii
,
S.
Klippenstein
, and
I. W. M.
Smith
,
Science
317
,
102
105
(
2007
).
56.
I. R.
Sims
,
Nat. Chem.
5
,
734
736
(
2013
).
57.
J.
Zheng
,
X.
Xu
,
R.
Meana-Paneda
, and
D. G.
Truhlar
,
Chem. Sci.
5
,
2091
2099
(
2014
).
58.
K.
Glanzer
and
J.
Troe
,
J. Chem. Phys.
63
,
4352
4357
(
1975
).

Supplementary Material

You do not currently have access to this content.