Strong orthogonality is an important constraint placed on geminal wavefunctions in order to make variational minimization tractable. However, strong orthogonality prevents certain, possibly important, excited configurations from contributing to the ground state description of chemical systems. The presented method lifts strong orthogonality constraint from geminal wavefunction by computing a perturbative-like correction to each geminal independently from the corrections to all other geminals. The method is applied to the Singlet-type Strongly orthogonal Geminals variant of the geminal wavefunction. Comparisons of this new SSpG method are made to the non-orthogonal AP1roG and the unconstrained Geminal Mean-Field Configuration Interaction method using small atomic and molecular systems. The correction is also compared to Density Matrix Renormalization Group calculations performed on long polyene chains in order to assess its scalability and applicability to large strongly correlated systems. The results of these comparisons demonstrate that although the perturbative correction is small, it may be a necessary first step in the systematic improvement of any strongly orthogonal geminal method.

1.
H. F.
King
,
J. Chem. Phys.
46
,
705
(
1967
).
2.
A. C.
Hurley
,
J. E.
Lennard-Jones
, and
J. A.
Pople
,
Proc. R. Soc. London, Ser. A
220
,
446
(
1953
).
3.
P.
Cassam-Chenaï
and
V.
Rassolov
,
Chem. Phys. Lett.
487
,
147
(
2010
).
4.
T.
Arai
,
J. Chem. Phys.
33
,
95
(
1960
).
5.
J.
Bardeen
,
L. N.
Cooper
, and
J. R.
Schrieffer
,
Phys. Rev.
108
,
1175
(
1957
).
6.
V. A.
Rassolov
,
J. Chem. Phys.
117
,
5978
(
2002
).
7.
V. A.
Rassolov
and
F.
Xu
,
J. Chem. Phys.
126
,
234112
(
2007
).
8.
J. E.
Lennard-Jones
,
Proc. Natl. Acad. Sci. U.S.A.
38
,
496
(
1952
).
9.
V. A.
Rassolov
,
F.
Xu
, and
S.
Garashchuk
,
J. Chem. Phys.
120
,
10385
(
2004
).
10.
B. A.
Cagg
and
V. A.
Rassolov
,
Chem. Phys. Lett.
543
,
205
(
2012
).
11.
P.
Cassam-Chenaï
,
J. Chem. Phys.
124
,
194109
(
2006
).
12.
S.
Wilson
,
J. Chem. Phys.
64
,
1692
(
1976
).
13.
P. A.
Limacher
,
P. W.
Ayers
,
P. A.
Johnson
,
S. D.
Baerdemacker
,
D. V.
Neck
, and
P.
Bultinck
,
J. Chem. Theory Comput.
9
,
1394
(
2013
).
14.
J.
Hachmann
,
W.
Cardoen
, and
G. K.-L.
Chan
,
J. Chem. Phys.
125
,
144101
(
2006
).
15.
O.
Sinanoǧlu
,
Many-electron Theory of Atoms, Molecules and their Interactions
(
John Wiley and Sons, Inc.
,
1964
), pp.
315
412
.
16.
R. K.
Nesbet
,
Electronic Correlation in Atoms and Molecules
(
John Wiley and Sons, Inc.
,
1965
), pp.
321
363
.
17.
P.
Jeszenszki
,
P. R.
Nagy
,
T.
Zoboki
,
Á.
Szabados
, and
P. R.
Surján
,
Int. J. Quantum Chem.
114
,
1048
(
2014
).
18.
E.
Rosta
and
P. R.
Surján
,
J. Chem. Phys.
116
,
878
(
2002
).
19.
Y.
Shao
,
L.
Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S.
Brown
,
A.
Gilbert
,
L.
Slipchenko
,
S.
Levchenko
,
D.
O’Neill
 et al.,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
20.
P. A.
Limacher
,
P. W.
Ayers
,
P. A.
Johnson
,
S. D.
Baerdemacker
,
D. V.
Neck
, and
P.
Bultinck
,
Phys. Chem. Chem. Phys.
16
,
5061
(
2014
).
You do not currently have access to this content.