In this work, we study a surface reaction on Pd(111) crystals under ultra-high-vacuum conditions that can be modeled by two coupled reaction-diffusion equations. In the bistable regime, the reaction exhibits travelling fronts that can be observed experimentally using photo electron emission microscopy. The spatial profile of the fronts reveals a coverage-dependent diffusivity for one of the species. We propose a method to solve the nonlinear eigenvalue problem and compute the direction and the speed of the fronts based on a geometrical construction in phase-space. This method successfully captures the dependence of the speed on control parameters and diffusivities.
REFERENCES
1.
J. D.
Murray
, Mathematical Biology
(Springer-Verlag
, New York
, 1993
).2.
V.
Méndez
, S.
Fedotov
, and W.
Horsthemke
, Reaction-transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities
(Springer
, Berlin
, 2010
).3.
V.
Volpert
and S.
Petrovskii
, “Reaction-diffusion waves in biology
,” Phys. Life Rev.
6
, 267
–310
(2009
).4.
K.
Krischer
, M.
Eiswirth
, and G.
Ertl
, “Oscillatory CO oxidation on Pt(110): Modeling of temporal self-organization
,” J. Chem. Phys.
96
(12
), 9161
–9172
(1992
).5.
T.
Engel
and G.
Ertl
, “A molecular beam investigation of the catalytic oxidation of CO on Pd(111)
,” J. Chem. Phys.
69
, 1267
(1978
).6.
T.
Engel
and G.
Ertl
, “Elementary steps in the catalytic oxidation of carbon monoxide on platinum metals
,” Adv. Catal.
28
, 2
(1979
).7.
A.
von Oertzen
, H. H.
Rotermund
, and S.
Nettesheim
, “Investigation of diffusion of CO absorbed on Pd(111) by a combined PEEM/LITD technique
,” Chem. Phys. Lett.
199
(1–2
), 131
–137
(1992
).8.
M.
Šnabl
, O.
Borusík
, V.
Cháb
, M.
Ondřejček
, W.
Stenzel
, H.
Conrad
, and A. M.
Bradshaw
, “Surface diffusion of CO molecules on Pd(111) studied with photoelectron emission microscopy
,” Surf. Sci.
385
, L1016
–L1022
(1997
).9.
J. V.
Barth
, “Transport of adsorbates at metal surfaces, from thermal migration to hot precursors
,” Surf. Sci. Rep.
40
, 75
–149
(2000
).10.
E. G.
Seebauer
and C. E.
Allen
, “Estimating surface diffusion coefficients
,” Prog. Surf. Sci.
49
, 265
(1995
).11.
A. P.
Bonzel
, “Adsorbed layers on surfaces. Part 1: Adsorption on surfaces and surface diffusion of adsorbates
,” Physics of Covered Solid Surfaces
, Landolt-Börnstein - Group III Condensed Matter
Vol. 42A1
(Springer-Verlag
, Berlin
, 2001
), pp. 1
–58
, 455–501.12.
S.
Karpitschka
, S.
Wehner
, and J.
Küppers
, “Reaction hysteresis of the CO + O2 → CO2 reaction on Palladium(111)
,” J. Chem. Phys.
130
, 054706
(2009
).13.
G.
Ertl
, P. R.
Norton
, and J.
Rüstig
, “Kinetic oscillations in the platinum-catalyzed oxidation of CO
,” Phys. Rev. Lett.
49
, 177
(1982
).14.
H. H.
Rotermund
, W.
Engel
, M.
Kordesch
, and G.
Ertl
, “Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum
,” Nature (London)
343
, 355
(1990
).15.
G.
Ertl
, “Oscillatory catalytic reactions at single-crystal surfaces
,” Adv. Catal.
37
, 213
(1990
).16.
R.
Imbihl
, “Oscillatory reactions on single crystal surfaces
,” Prog. Surf. Sci.
44
, 185
(1993
).17.
R.
Imbihl
and G.
Ertl
, “Oscillatory kinetics in heterogeneous catalysis
,” Chem. Rev.
95
(3
), 697
–733
(1995
).18.
A.
Schaak
and R.
Imbihl
, “Spiral waves and formation of low work function areas in catalytic NO reduction with hydrogen on a Rh(111) surface
,” J. Chem. Phys.
116
, 9021
(2002
).19.
S.
Wehner
, S.
Karpitschka
, Y.
Burkov
, D.
Schmeisser
, J.
Küppers
, and H. R.
Brand
, “Stochastic aspects of pattern formation during the catalytic oxidation of CO on Pd(111) surfaces
,” Physica D
239
(11
), 746
–751
(2010
).20.
M.
Tammaro
and J. W.
Evans
, “Chemical diffusivity and wave propagation in surface reactions: Lattice-gas model mimicking CO-oxidation with high CO-mobility
,” J. Chem. Phys.
108
, 762
–773
(1998
).21.
M.
Tammaro
and J. W.
Evans
, “Reactive removal of unstable NO+CO adlayers: Chemical diffusion and reaction front propagation
,” J. Chem. Phys.
108
, 7795
–7806
(1998
).22.
M.
Tammaro
, J. W.
Evans
, C. S.
Rastomjee
, W.
Swiech
, A. M.
Bradshaw
, and R.
Imbihl
, “Reaction-diffusion front propagation across stepped surfaces during catalytic oxidation of CO on Pt(100)
,” Surf. Sci.
407
, 162
–170
(1998
).23.
J. W.
Evans
, D. J.
Liu
, and M.
Tammaro
, “From atomistic lattice-gas models for surface reactions to hydrodynamic reaction-diffusion equations
,” Chaos
12
, 131
–143
(2002
).24.
S. H.
Kim
, J.
Méndez
, J.
Wintterlin
, and G.
Ertl
, “Enhanced reactivity of adsorbed oxygen on Pd(111) induced by compression of the oxygen layer
,” Phys. Rev. B
72
, 155414
(2005
).25.
A.
Liehr
, Dissipative Solitons in Reaction Diffusion Systems: Mechanisms, Dynamics, Interaction
(Springer
, Berlin
, 2013
).26.
P. C.
Fife
and J. B.
McLeod
, “The approach of solutions of nonlinear diffusion equations to travelling front solutions
,” Arch. Ration. Mech. Anal.
65
, 335
–361
(1977
).27.
J.
Billingham
and D. J.
Needham
, “The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. I. Permanent form travelling waves
,” Philos. Trans. R. Soc. London, Ser. A
334
, 1
–24
(1991
).28.
S.
Focant
and Th.
Gallay
, “Existence and stability of propagating fronts for an autocatalytic reaction-diffusion system
,” Physica D
120
, 346
–368
(1998
).29.
A.
Okubo
, Diffusion and Ecological Problems: Mathematical Models
(Springer
, Berlin
, 1980
).30.
T.
Engel
, “A molecular beam investigation of He, CO, and O2 scattering from Pd(111)
,” J. Chem. Phys.
69
, 373
(1978
).31.
H. H.
Rotermund
, “Investigation of dynamic processes in adsorbed layers by photoemission electron microscopy (PEEM)
,” Surf. Sci.
283
, 87
(1993
).32.
S.
Karpitschka
, S.
Wehner
, Y.
Burkhov
, D.
Schmeisser
, and J.
Küppers
, “In-situ measurement of adsorbate diffusion during the CO oxidation reaction on palladium(111)
,” (unpublished).33.
S.
Wehner
, “The CO oxidation reaction on Ir(111) surfaces: Bistability, noise and spatio-temporal patterns in experiment and modeling
,” Int. J. Bifur. Chaos
19
(8
), 2637
–2675
(2009
).34.
S.
Wehner
, P.
Hoffmann
, D.
Schmeisser
, H. R.
Brand
, and J.
Küppers
, “Spatiotemporal patterns of external noise-induced transitions in a bistable reaction-diffusion system: Photoelectron emission microscopy experiments and modeling
,” Phys. Rev. Lett.
95
, 038301
(2005
).35.
P.
Hoffmann
, S.
Wehner
, D.
Schmeisser
, H. R.
Brand
, and J.
Küppers
, “Noise-induced spatiotemporal patterns in a bistable reaction-diffusion system: Photo-electron emission microscopy experiments and modeling of the CO oxidation reaction on Ir(111)
,” Phys. Rev. E
73
, 056123
(2006
).36.
M.
Bär
, Ch.
Zülicke
, M.
Eiswirth
, and G.
Ertl
, “Theoretical modeling of spatiotemporal self-organization in a surface catalyzed reaction exhibiting bistable kinetics
,” J. Chem. Phys.
96
, 8595
(1992
).37.
H. H.
Rotermund
, M.
Pollmann
, and I. G.
Kevrekidis
, “Pattern formation during the CO oxidation involving subsurface oxygen
,” Chaos
12
, 157
(2002
).38.
J.
Powell
and M.
Tabor
, “Non-generic connections corresponding to front solutions
,” J. Phys. A
25
, 3773
–3796
(1992
).39.
Software Sympy version 0.7.4.1 available from sympy.org.
40.
Y.
Qi
, “The development of travelling waves in cubic auto-catalysis with different rates of diffusion
,” Physica D
226
(2
), 129
–135
(2007
).41.
L.
Kramer
, G.
Gottwald
, V. I.
Krinsky
, A.
Pumir
, and V. V.
Barelko
, “Persistence of zero velocity fronts in reaction diffusion systems
,” Chaos
10
(3
), 731
–737
(2000
).© 2014 AIP Publishing LLC.
2014
AIP Publishing LLC
You do not currently have access to this content.