In this work, we study a surface reaction on Pd(111) crystals under ultra-high-vacuum conditions that can be modeled by two coupled reaction-diffusion equations. In the bistable regime, the reaction exhibits travelling fronts that can be observed experimentally using photo electron emission microscopy. The spatial profile of the fronts reveals a coverage-dependent diffusivity for one of the species. We propose a method to solve the nonlinear eigenvalue problem and compute the direction and the speed of the fronts based on a geometrical construction in phase-space. This method successfully captures the dependence of the speed on control parameters and diffusivities.

1.
J. D.
Murray
,
Mathematical Biology
(
Springer-Verlag
,
New York
,
1993
).
2.
V.
Méndez
,
S.
Fedotov
, and
W.
Horsthemke
,
Reaction-transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities
(
Springer
,
Berlin
,
2010
).
3.
V.
Volpert
and
S.
Petrovskii
, “
Reaction-diffusion waves in biology
,”
Phys. Life Rev.
6
,
267
310
(
2009
).
4.
K.
Krischer
,
M.
Eiswirth
, and
G.
Ertl
, “
Oscillatory CO oxidation on Pt(110): Modeling of temporal self-organization
,”
J. Chem. Phys.
96
(
12
),
9161
9172
(
1992
).
5.
T.
Engel
and
G.
Ertl
, “
A molecular beam investigation of the catalytic oxidation of CO on Pd(111)
,”
J. Chem. Phys.
69
,
1267
(
1978
).
6.
T.
Engel
and
G.
Ertl
, “
Elementary steps in the catalytic oxidation of carbon monoxide on platinum metals
,”
Adv. Catal.
28
,
2
(
1979
).
7.
A.
von Oertzen
,
H. H.
Rotermund
, and
S.
Nettesheim
, “
Investigation of diffusion of CO absorbed on Pd(111) by a combined PEEM/LITD technique
,”
Chem. Phys. Lett.
199
(
1–2
),
131
137
(
1992
).
8.
M.
Šnabl
,
O.
Borusík
,
V.
Cháb
,
M.
Ondřejček
,
W.
Stenzel
,
H.
Conrad
, and
A. M.
Bradshaw
, “
Surface diffusion of CO molecules on Pd(111) studied with photoelectron emission microscopy
,”
Surf. Sci.
385
,
L1016
L1022
(
1997
).
9.
J. V.
Barth
, “
Transport of adsorbates at metal surfaces, from thermal migration to hot precursors
,”
Surf. Sci. Rep.
40
,
75
149
(
2000
).
10.
E. G.
Seebauer
and
C. E.
Allen
, “
Estimating surface diffusion coefficients
,”
Prog. Surf. Sci.
49
,
265
(
1995
).
11.
A. P.
Bonzel
, “
Adsorbed layers on surfaces. Part 1: Adsorption on surfaces and surface diffusion of adsorbates
,”
Physics of Covered Solid Surfaces
,
Landolt-Börnstein - Group III Condensed Matter
Vol.
42A1
(
Springer-Verlag
,
Berlin
,
2001
), pp.
1
58
, 455–501.
12.
S.
Karpitschka
,
S.
Wehner
, and
J.
Küppers
, “
Reaction hysteresis of the CO + O2 → CO2 reaction on Palladium(111)
,”
J. Chem. Phys.
130
,
054706
(
2009
).
13.
G.
Ertl
,
P. R.
Norton
, and
J.
Rüstig
, “
Kinetic oscillations in the platinum-catalyzed oxidation of CO
,”
Phys. Rev. Lett.
49
,
177
(
1982
).
14.
H. H.
Rotermund
,
W.
Engel
,
M.
Kordesch
, and
G.
Ertl
, “
Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum
,”
Nature (London)
343
,
355
(
1990
).
15.
G.
Ertl
, “
Oscillatory catalytic reactions at single-crystal surfaces
,”
Adv. Catal.
37
,
213
(
1990
).
16.
R.
Imbihl
, “
Oscillatory reactions on single crystal surfaces
,”
Prog. Surf. Sci.
44
,
185
(
1993
).
17.
R.
Imbihl
and
G.
Ertl
, “
Oscillatory kinetics in heterogeneous catalysis
,”
Chem. Rev.
95
(
3
),
697
733
(
1995
).
18.
A.
Schaak
and
R.
Imbihl
, “
Spiral waves and formation of low work function areas in catalytic NO reduction with hydrogen on a Rh(111) surface
,”
J. Chem. Phys.
116
,
9021
(
2002
).
19.
S.
Wehner
,
S.
Karpitschka
,
Y.
Burkov
,
D.
Schmeisser
,
J.
Küppers
, and
H. R.
Brand
, “
Stochastic aspects of pattern formation during the catalytic oxidation of CO on Pd(111) surfaces
,”
Physica D
239
(
11
),
746
751
(
2010
).
20.
M.
Tammaro
and
J. W.
Evans
, “
Chemical diffusivity and wave propagation in surface reactions: Lattice-gas model mimicking CO-oxidation with high CO-mobility
,”
J. Chem. Phys.
108
,
762
773
(
1998
).
21.
M.
Tammaro
and
J. W.
Evans
, “
Reactive removal of unstable NO+CO adlayers: Chemical diffusion and reaction front propagation
,”
J. Chem. Phys.
108
,
7795
7806
(
1998
).
22.
M.
Tammaro
,
J. W.
Evans
,
C. S.
Rastomjee
,
W.
Swiech
,
A. M.
Bradshaw
, and
R.
Imbihl
, “
Reaction-diffusion front propagation across stepped surfaces during catalytic oxidation of CO on Pt(100)
,”
Surf. Sci.
407
,
162
170
(
1998
).
23.
J. W.
Evans
,
D. J.
Liu
, and
M.
Tammaro
, “
From atomistic lattice-gas models for surface reactions to hydrodynamic reaction-diffusion equations
,”
Chaos
12
,
131
143
(
2002
).
24.
S. H.
Kim
,
J.
Méndez
,
J.
Wintterlin
, and
G.
Ertl
, “
Enhanced reactivity of adsorbed oxygen on Pd(111) induced by compression of the oxygen layer
,”
Phys. Rev. B
72
,
155414
(
2005
).
25.
A.
Liehr
,
Dissipative Solitons in Reaction Diffusion Systems: Mechanisms, Dynamics, Interaction
(
Springer
,
Berlin
,
2013
).
26.
P. C.
Fife
and
J. B.
McLeod
, “
The approach of solutions of nonlinear diffusion equations to travelling front solutions
,”
Arch. Ration. Mech. Anal.
65
,
335
361
(
1977
).
27.
J.
Billingham
and
D. J.
Needham
, “
The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. I. Permanent form travelling waves
,”
Philos. Trans. R. Soc. London, Ser. A
334
,
1
24
(
1991
).
28.
S.
Focant
and
Th.
Gallay
, “
Existence and stability of propagating fronts for an autocatalytic reaction-diffusion system
,”
Physica D
120
,
346
368
(
1998
).
29.
A.
Okubo
,
Diffusion and Ecological Problems: Mathematical Models
(
Springer
,
Berlin
,
1980
).
30.
T.
Engel
, “
A molecular beam investigation of He, CO, and O2 scattering from Pd(111)
,”
J. Chem. Phys.
69
,
373
(
1978
).
31.
H. H.
Rotermund
, “
Investigation of dynamic processes in adsorbed layers by photoemission electron microscopy (PEEM)
,”
Surf. Sci.
283
,
87
(
1993
).
32.
S.
Karpitschka
,
S.
Wehner
,
Y.
Burkhov
,
D.
Schmeisser
, and
J.
Küppers
, “
In-situ measurement of adsorbate diffusion during the CO oxidation reaction on palladium(111)
,” (unpublished).
33.
S.
Wehner
, “
The CO oxidation reaction on Ir(111) surfaces: Bistability, noise and spatio-temporal patterns in experiment and modeling
,”
Int. J. Bifur. Chaos
19
(
8
),
2637
2675
(
2009
).
34.
S.
Wehner
,
P.
Hoffmann
,
D.
Schmeisser
,
H. R.
Brand
, and
J.
Küppers
, “
Spatiotemporal patterns of external noise-induced transitions in a bistable reaction-diffusion system: Photoelectron emission microscopy experiments and modeling
,”
Phys. Rev. Lett.
95
,
038301
(
2005
).
35.
P.
Hoffmann
,
S.
Wehner
,
D.
Schmeisser
,
H. R.
Brand
, and
J.
Küppers
, “
Noise-induced spatiotemporal patterns in a bistable reaction-diffusion system: Photo-electron emission microscopy experiments and modeling of the CO oxidation reaction on Ir(111)
,”
Phys. Rev. E
73
,
056123
(
2006
).
36.
M.
Bär
,
Ch.
Zülicke
,
M.
Eiswirth
, and
G.
Ertl
, “
Theoretical modeling of spatiotemporal self-organization in a surface catalyzed reaction exhibiting bistable kinetics
,”
J. Chem. Phys.
96
,
8595
(
1992
).
37.
H. H.
Rotermund
,
M.
Pollmann
, and
I. G.
Kevrekidis
, “
Pattern formation during the CO oxidation involving subsurface oxygen
,”
Chaos
12
,
157
(
2002
).
38.
J.
Powell
and
M.
Tabor
, “
Non-generic connections corresponding to front solutions
,”
J. Phys. A
25
,
3773
3796
(
1992
).
39.
Software Sympy version 0.7.4.1 available from sympy.org.
40.
Y.
Qi
, “
The development of travelling waves in cubic auto-catalysis with different rates of diffusion
,”
Physica D
226
(
2
),
129
135
(
2007
).
41.
L.
Kramer
,
G.
Gottwald
,
V. I.
Krinsky
,
A.
Pumir
, and
V. V.
Barelko
, “
Persistence of zero velocity fronts in reaction diffusion systems
,”
Chaos
10
(
3
),
731
737
(
2000
).
You do not currently have access to this content.