We study the effects of atomic vibrations on the solid-state chemical shielding tensor using first principles density functional theory calculations. At the harmonic level, we use a Monte Carlo method and a perturbative expansion. The Monte Carlo method is accurate but computationally expensive, while the perturbative method is computationally more efficient, but approximate. We find excellent agreement between the two methods for both the isotropic shift and the shielding anisotropy. The effects of zero-point quantum mechanical nuclear motion are important up to relatively high temperatures: at 500 K they still represent about half of the overall vibrational contribution. We also investigate the effects of anharmonic vibrations, finding that their contribution to the zero-point correction to the chemical shielding tensor is small. We exemplify these ideas using magnesium oxide and the molecular crystals L-alanine and β-aspartyl-L-alanine. We therefore propose as the method of choice to incorporate the effects of temperature in solid state chemical shielding tensor calculations using the perturbative expansion within the harmonic approximation. This approach is accurate and requires a computational effort that is about an order of magnitude smaller than that of dynamical or Monte Carlo approaches, so these effects might be routinely accounted for.

1.
A.
Lesage
, “
Recent advances in solid-state NMR spectroscopy of spin I = 1/2 nuclei
,”
Phys. Chem. Chem. Phys.
11
,
6876
(
2009
).
2.
S. E.
Ashbrook
, “
Recent advances in solid-state NMR spectroscopy of quadrupolar nuclei
,”
Phys. Chem. Chem. Phys.
11
,
6892
(
2009
).
3.
C.
Bonhomme
,
C.
Gervais
,
F.
Babonneau
,
C.
Coelho
,
F.
Pourpoint
,
T.
Azaïs
,
S. E.
Ashbrook
,
J. M.
Griffin
,
J. R.
Yates
,
F.
Mauri
, and
C. J.
Pickard
, “
First-principles calculation of NMR parameters using the gauge including projector augmented wave method: A chemist's point of view
,”
Chem. Rev.
112
,
5733
(
2012
).
4.
P.
Florian
and
D.
Massiot
, “
Beyond periodicity: Probing disorder in crystalline materials by solid-state nuclear magnetic resonance spectroscopy
,”
CrystEngComm
15
,
8623
(
2013
).
5.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
6.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
7.
M. C.
Payne
,
M. P.
Teter
,
D. C.
Allan
,
T. A.
Arias
, and
J. D.
Joannopoulos
, “
Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients
,”
Rev. Mod. Phys.
64
,
1045
(
1992
).
8.
C. J.
Pickard
and
F.
Mauri
, “
All-electron magnetic response with pseudopotentials: NMR chemical shifts
,”
Phys. Rev. B
63
,
245101
(
2001
).
9.
J. R.
Yates
,
C. J.
Pickard
, and
F.
Mauri
, “
Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials
,”
Phys. Rev. B
76
,
024401
(
2007
).
10.
C.
Gervais
,
M.
Profeta
,
V.
Lafond
,
C.
Bonhomme
,
T.
Azaïs
,
H.
Mutin
,
C. J.
Pickard
,
F.
Mauri
, and
F.
Babonneau
, “
Combined ab initio computational and experimental multinuclear solid-state magnetic resonance study of phenylphosphonic acid
,”
Magn. Reson. Chem.
42
,
445
(
2004
).
11.
M.
Profeta
,
F.
Mauri
, and
C. J.
Pickard
, “
Accurate first principles prediction of 17O NMR parameters in SiO2: Assignment of the zeolite ferrierite spectrum
,”
J. Am. Chem. Soc.
125
,
541
(
2003
).
12.
T.
Charpentier
,
S.
Ispas
,
M.
Profeta
,
F.
Mauri
, and
C. J.
Pickard
, “
First-principles calculation of 17O, 29Si, and 23Na NMR spectra of sodium silicate crystals and glasses
,”
J. Phys. Chem. B
108
,
4147
(
2004
).
13.
H.
Früchtl
,
T.
van Mourik
,
C.
Pickard
, and
J.
Woollins
, “
The structure of (SCN)x: A study using molecular and solid-state density functional theory calculations
,”
Chem. – Eur. J.
15
,
2687
(
2009
).
14.
J.-S.
Filhol
,
J.
Deschamps
,
S. G.
Dutremez
,
B.
Boury
,
T.
Barisien
,
L.
Legrand
, and
M.
Schott
, “
Polymorphs and colors of polydiacetylenes: A first principles study
,”
J. Am. Chem. Soc.
131
,
6976
(
2009
).
15.
H.
Chappell
,
M.
Duer
,
N.
Groom
,
C. J.
Pickard
, and
P.
Bristowe
, “
Probing the surface structure of hydroxyapatite using NMR spectroscopy and first principles calculations
,”
Phys. Chem. Chem. Phys.
10
,
600
(
2008
).
16.
C. H.
Gee
and
W. T.
Raynes
, “
Nuclear motion effects on the 13C, 19F and 1H shielding in methyl fluoride
,”
Chem. Phys. Lett.
330
,
595
(
2000
).
17.
M.
Böhm
,
J.
Schulte
, and
R.
Ramírez
, “
Nuclear quantum effects in calculated NMR shieldings of ethylene; a Feynman path integral - ab initio study
,”
Chem. Phys. Lett.
332
,
117
(
2000
).
18.
J.
Schulte
,
R.
Ramírez
, and
M. C.
Böhm
, “
Nuclear quantum effects in calculated NMR shieldings of benzene; a Feynman path integral study
,”
Mol. Phys.
99
,
1155
(
2001
).
19.
T. A.
Ruden
,
O. B.
Lutnæs
,
T.
Helgaker
, and
K.
Ruud
, “
Vibrational corrections to indirect nuclear spin-spin coupling constants calculated by density-functional theory
,”
J. Chem. Phys.
118
,
9572
(
2003
).
20.
M.
Dračínský
,
J.
Kaminský
, and
P.
Bouř
, “
Relative importance of first and second derivatives of nuclear magnetic resonance chemical shifts and spin-spin coupling constants for vibrational averaging
,”
J. Chem. Phys.
130
,
094106
(
2009
).
21.
S.
Rossano
,
F.
Mauri
,
C. J.
Pickard
, and
I.
Farnan
, “
First-principles calculation of 17O and 25Mg NMR shieldings in MgO at finite temperature: Rovibrational effect in solids
,”
J. Phys. Chem. B
109
,
7245
(
2005
).
22.
J.-N.
Dumez
and
C. J.
Pickard
, “
Calculation of NMR chemical shifts in organic solids: Accounting for motional effects
,”
J. Chem. Phys.
130
,
104701
(
2009
).
23.
J.
Schmidt
and
D.
Sebastiani
, “
Anomalous temperature dependence of nuclear quadrupole interactions in strongly hydrogen-bonded systems from first principles
,”
J. Chem. Phys.
123
,
074501
(
2005
).
24.
Y. J.
Lee
,
B.
Bingöl
,
T.
Murakhtina
,
D.
Sebastiani
,
W. H.
Meyer
,
G.
Wegner
, and
H. W.
Spiess
, “
High-resolution solid-state NMR studies of poly(vinyl phosphonic acid) proton-conducting polymer: Molecular structure and proton dynamics
,”
J. Phys. Chem. B
111
,
9711
(
2007
).
25.
M.
Robinson
and
P. D.
Haynes
, “
Dynamical effects in ab initio NMR calculations: Classical force fields fitted to quantum forces
,”
J. Chem. Phys.
133
,
084109
(
2010
).
26.
I. D.
Gortari
,
G.
Portella
,
X.
Salvatella
,
V. S.
Bajaj
,
P. C. A.
van der Wel
,
J. R.
Yates
,
M. D.
Segall
,
C. J.
Pickard
,
M. C.
Payne
, and
M.
Vendruscolo
, “
Time averaging of NMR chemical shifts in the MLF peptide in the solid state
,”
J. Am. Chem. Soc.
132
,
5993
(
2010
).
27.
M.
Dračínský
and
P.
Hodgkinson
, “
A molecular dynamics study of the effects of fast molecular motions on solid-state NMR parameters
,”
CrystEngComm
15
,
8705
(
2013
).
28.
M.
Dračínský
and
P.
Hodgkinson
, “
Effects of quantum nuclear delocalisation on NMR parameters from path integral molecular dynamics
,”
Chem. – Eur. J.
20
,
2201
(
2014
).
29.
M.
Dračínský
and
P.
Bouř
, “
Vibrational averaging of the chemical shift in crystalline α-glycine
,”
J. Comput. Chem.
33
,
1080
(
2012
).
30.
B.
Monserrat
,
N. D.
Drummond
, and
R. J.
Needs
, “
Anharmonic vibrational properties in periodic systems: Energy, electron-phonon coupling, and stress
,”
Phys. Rev. B
87
,
144302
(
2013
).
31.
B.
Monserrat
,
N. D.
Drummond
,
C. J.
Pickard
, and
R. J.
Needs
, “
Electron-phonon coupling and the metallization of solid helium at terapascal pressures
,”
Phys. Rev. Lett.
112
,
055504
(
2014
).
32.
S.
Azadi
,
B.
Monserrat
,
W. M. C.
Foulkes
, and
R. J.
Needs
, “
Dissociation of high-pressure solid molecular hydrogen: A quantum Monte Carlo and anharmonic vibrational study
,”
Phys. Rev. Lett.
112
,
165501
(
2014
).
33.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. I. J.
Probert
,
K.
Refson
, and
M. C.
Payne
, “
First principles methods using CASTEP
,”
Z. Kristallogr.
220
,
567
(
2005
).
34.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
35.
D.
Vanderbilt
, “
Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
,”
Phys. Rev. B
41
,
7892
(
1990
).
36.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
(
1976
).
37.
C. C.
Wilson
,
D.
Myles
,
M.
Ghosh
,
L. N.
Johnson
, and
W.
Wang
, “
Neutron diffraction investigations of l- and d-alanine at different temperatures: The search for structural evidence for parity violation
,”
New J. Chem.
29
,
1318
(
2005
).
38.
C. H.
Görbitz
, “
Crystal and molecular structures of the isomeric dipeptides α-l-aspartyl-l-alanine and β-l-aspartyl-l-alanine
,”
Acta Chem. Scand., Ser. B
41
,
679
(
1987
).
39.
K.
Kunc
and
R. M.
Martin
, “
Ab initio force constants of GaAs: A new approach to calculation of phonons and dielectric properties
,”
Phys. Rev. Lett.
48
,
406
(
1982
).
40.
This is true only if the variance of the function being sampled does not change when increasing the dimension of the integral.
41.
A.
Naito
,
S.
Ganapathy
,
K.
Akasaka
, and
C. A.
McDowell
, “
Chemical shielding tensor and 13C-14N dipolar splitting in single crystals of L-alanine
,”
J. Chem. Phys.
74
,
3190
(
1981
).
42.
C. J.
Pickard
,
E.
Salager
,
G.
Pintacuda
,
B.
Elena
, and
L.
Emsley
, “
Resolving structures from powders by NMR crystallography using combined proton spin diffusion and plane wave DFT calculations
,”
J. Am. Chem. Soc.
129
,
8932
(
2007
).
43.
B. C.
Mort
and
J.
Autschbach
, “
Magnitude of zero-point vibrational corrections to optical rotation in rigid organic molecules: A time-dependent density functional study
,”
J. Phys. Chem. A
109
,
8617
(
2005
).
44.
P.
Souvatzis
,
O.
Eriksson
,
M. I.
Katsnelson
, and
S. P.
Rudin
, “
Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory
,”
Phys. Rev. Lett.
100
,
095901
(
2008
).
45.
I.
Errea
,
B.
Rousseau
, and
A.
Bergara
, “
Anharmonic stabilization of the high-pressure simple cubic phase of calcium
,”
Phys. Rev. Lett.
106
,
165501
(
2011
).
46.
O.
Hellman
,
I. A.
Abrikosov
, and
S. I.
Simak
, “
Lattice dynamics of anharmonic solids from first principles
,”
Phys. Rev. B
84
,
180301
(
2011
).
47.
N.
Antolin
,
O. D.
Restrepo
, and
W.
Windl
, “
Fast free-energy calculations for unstable high-temperature phases
,”
Phys. Rev. B
86
,
054119
(
2012
).
48.
I.
Errea
,
M.
Calandra
, and
F.
Mauri
, “
First-principles theory of anharmonicity and the inverse isotope effect in superconducting palladium-hydride compounds
,”
Phys. Rev. Lett.
111
,
177002
(
2013
).
49.
I.
Errea
,
M.
Calandra
, and
F.
Mauri
, “
Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: Application to platinum and palladium hydrides
,”
Phys. Rev. B
89
,
064302
(
2014
).
You do not currently have access to this content.