We derive a somewhat crude, yet very efficient semiclassical approximation for computing nonadiabatic spectra. The resulting method, which is a generalization of the multiple-surface dephasing representation, includes quantum effects through interference of mixed quantum-classical trajectories and through quantum treatment of the collective electronic degree of freedom. The method requires very little computational effort beyond the fewest-switches surface hopping or Ehrenfest locally mean-field dynamics and is very easy to implement. The proposed approximation is tested by computing the absorption and time-resolved stimulated emission spectra of pyrazine using the four-dimensional three-surface model which allows for comparison with the numerically exact quantum spectra. As expected, the multiple-surface dephasing representation is not suitable for high-resolution linear spectra, yet it seems to capture all the important features of pump-probe spectra. Finally, the method is combined with on-the-fly ab initio evaluation of the electronic structure (i.e., energies, forces, electric-dipole, and nonadiabatic couplings) in order to compute fully dimensional nonadiabatic spectra of pyrazine without approximations inherent to analytical, including vibronic-coupling models. The Appendix provides derivations of perturbative expressions for linear and pump-probe spectra of arbitrary mixed states and for arbitrary laser pulse shapes.

1.
P.
Atkins
and
J.
De Paula
,
Physical Chemistry
, 8th ed. (
Oxford University Press
,
2006
).
2.
T.
Zimmermann
and
J.
Vaníček
,
J. Chem. Phys.
136
,
094106
(
2012
).
3.
T.
Zimmermann
and
J.
Vaníček
,
J. Chem. Phys.
137
,
22A516
(
2012
).
4.
T.
Zimmermann
and
J.
Vaníček
,
J. Chem. Phys.
132
,
241101
(
2010
).
5.
W.
Domcke
,
H.
Köppel
, and
L.
Cederbaum
,
Mol. Phys.
43
,
851
(
1981
).
6.
W.
Domcke
and
G.
Stock
,
Adv. Chem. Phys.
100
,
1
(
1997
).
7.
J.
Vaníček
and
E. J.
Heller
,
Phys. Rev. E
68
,
056208
(
2003
).
8.
J.
Vaníček
,
Phys. Rev. E
70
,
055201
(
2004
).
9.
J.
Vaníček
,
Phys. Rev. E
73
,
046204
(
2006
).
10.
11.
S.
Mukamel
,
J. Chem. Phys.
77
,
173
(
1982
).
12.
N. E.
Shemetulskis
and
R. F.
Loring
,
J. Chem. Phys.
97
,
1217
(
1992
).
14.
Z.
Li
,
J.-Y.
Fang
, and
C. C.
Martens
,
J. Chem. Phys.
104
,
6919
(
1996
).
15.
S. A.
Egorov
,
E.
Rabani
, and
B. J.
Berne
,
J. Chem. Phys.
108
,
1407
(
1998
).
16.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
122
,
064506
(
2005
).
17.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
129
,
124505
(
2008
).
18.
M.
Wehrle
,
M.
Šulc
, and
J.
Vaníček
,
Chimia
65
,
334
(
2011
).
19.
M.
Šulc
and
J.
Vaníček
,
Mol. Phys.
110
,
945
(
2012
).
20.
Q.
Shi
and
E.
Geva
,
J. Phys. Chem. A
108
,
6109
(
2004
).
21.
W. H.
Miller
and
F. T.
Smith
,
Phys. Rev. A
17
,
939
(
1978
).
22.
L. M.
Hubbard
and
W. H.
Miller
,
J. Chem. Phys.
78
,
1801
(
1983
).
23.
H.
Wang
,
X.
Sun
, and
W. H.
Miller
,
J. Chem. Phys.
108
,
9726
(
1998
).
24.
E.
Zambrano
and
A. M.
Ozorio de Almeida
,
Phys. Rev. E
84
,
045201
(
2011
).
25.
E.
Zambrano
,
M.
Šulc
, and
J.
Vaníček
,
J. Chem. Phys.
139
,
054109
(
2013
).
26.
M.
Šulc
,
H.
Hernandez
,
T. J.
Martínez
, and
J.
Vaníček
,
J. Chem. Phys.
139
,
034112
(
2013
).
27.
L.
Kocia
and
E. J.
Heller
,
J. Chem. Phys.
139
,
124110
(
2013
).
28.
A. S.
Petit
and
J. E.
Subotnik
,
J. Chem. Phys.
141
,
014107
(
2014
).
29.
C.
Mollica
and
J.
Vaníček
,
Phys. Rev. Lett.
107
,
214101
(
2011
).
30.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
106
,
6346
(
1997
).
31.
M.
Thoss
,
W. H.
Miller
, and
G.
Stock
,
J. Chem. Phys.
112
,
10282
(
2000
).
32.
J. C.
Burant
and
V. S.
Batista
,
J. Chem. Phys.
116
,
2748
(
2002
).
33.
A.
Kondorskiy
and
H.
Nakamura
,
J. Chem. Phys.
120
,
8937
(
2004
).
34.
Y.
Wu
and
M. F.
Herman
,
J. Chem. Phys.
123
,
144106
(
2005
).
35.
W. H.
Miller
,
J. Phys. Chem. A
113
,
1405
(
2009
).
36.
E. J.
Heller
,
B.
Segev
, and
A. V.
Sergeev
,
J. Phys. Chem. B
106
,
8471
(
2002
).
37.
F.
Lahmani
and
N.
Ivanoff
,
J. Phys. Chem.
76
,
2245
(
1972
).
38.
E. F.
Zalewski
,
D. S.
McClure
, and
D. L.
Narva
,
J. Chem. Phys.
61
,
2964
(
1974
).
39.
I.
Suzuka
,
N.
Mikami
, and
M.
Ito
,
J. Mol. Spectrosc.
52
,
21
(
1974
).
40.
D. L.
Narva
and
D. S.
McClure
,
Chem. Phys.
11
,
151
(
1975
).
41.
I.
Yamazaki
,
T.
Murao
,
T.
Yamanaka
, and
K.
Yoshihara
,
Faraday Discuss. Chem. Soc.
75
,
395
(
1983
).
42.
W. M.
van Herpen
,
P. A. M.
Uijt de Haag
, and
W. L.
Meerts
,
J. Chem. Phys.
89
,
3939
(
1988
).
43.
K.
Innes
,
I.
Ross
, and
W. R.
Moomaw
,
J. Mol. Spectrosc.
132
,
492
(
1988
).
44.
L.
Wang
,
H.
Kohguchi
, and
T.
Suzuki
,
Faraday Discuss.
113
,
37
(
1999
).
45.
V.
Stert
,
P.
Farmanara
, and
W.
Radloff
,
J. Chem. Phys.
112
,
4460
(
2000
).
46.
Y.-I.
Suzuki
,
T.
Fuji
,
T.
Horio
, and
T.
Suzuki
,
J. Chem. Phys.
132
,
174302
(
2010
).
47.
R.
Schneider
and
W.
Domcke
,
Chem. Phys. Lett.
150
,
235
(
1988
).
48.
L.
Seidner
,
G.
Stock
,
A. L.
Sobolewski
, and
W.
Domcke
,
J. Chem. Phys.
96
,
5298
(
1992
).
49.
C.
Woywod
,
W.
Domcke
,
A. L.
Sobolewski
, and
H.-J.
Werner
,
J. Chem. Phys.
100
,
1400
(
1994
).
50.
S.
Krempl
,
M.
Winterstetter
,
H.
Plöhn
, and
W.
Domcke
,
J. Chem. Phys.
100
,
926
(
1994
).
51.
G.
Stock
,
C.
Woywod
,
W.
Domcke
,
T.
Swinney
, and
B. S.
Hudson
,
J. Chem. Phys.
103
,
6851
(
1995
).
52.
G. A.
Worth
,
H.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
105
,
4412
(
1996
).
53.
A.
Raab
,
G. A.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
110
,
936
(
1999
).
54.
S.
Dilthey
,
S.
Hahn
, and
G.
Stock
,
J. Chem. Phys.
112
,
4910
(
2000
).
55.
S.
Hahn
and
G.
Stock
,
Phys. Chem. Chem. Phys.
3
,
2331
(
2001
).
56.
M.
Ben-Nun
and
T. J.
Martínez
,
Adv. Chem. Phys.
121
,
439
(
2002
).
57.
C.
Coletti
and
G. D.
Billing
,
Chem. Phys. Lett.
368
,
289
(
2003
).
58.
D. V.
Shalashilin
and
M. S.
Child
,
J. Chem. Phys.
121
,
3563
(
2004
).
59.
X.
Chen
and
V. S.
Batista
,
J. Chem. Phys.
125
,
124313
(
2006
).
60.
R.
He
,
C.
Zhu
,
C.-H.
Chin
, and
S. H.
Lin
,
Chem. Phys. Lett.
476
,
19
(
2009
).
61.
C.
Woywod
,
A.
Papp
,
G. J.
Halász
, and
A.
Vibók
,
Theor. Chem. Acc.
125
,
521
(
2010
).
62.
T.
Shiozaki
,
C.
Woywod
, and
H.-J.
Werner
,
Phys. Chem. Chem. Phys.
15
,
262
(
2013
).
63.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
1995
).
64.
W. T.
Pollard
,
S.
Lee
, and
R. A.
Mathies
,
J. Chem. Phys.
92
,
4012
(
1990
).
65.
The Boltzmann factors of excited electronic states are typically negligible.
66.
L.
Seidner
,
G.
Stock
, and
W.
Domcke
,
J. Chem. Phys.
103
,
3998
(
1995
).
68.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
69.
J. C.
Tully
,
Faraday Discuss.
110
,
407
(
1998
).
70.
I. V.
Aleksandrov
,
Z. Naturforsch. A
36
,
902
(
1981
).
71.
W.
Boucher
and
J.
Traschen
,
Phys. Rev. D
37
,
3522
(
1988
).
72.
C. C.
Martens
and
J. Y.
Fang
,
J. Chem. Phys.
106
,
4918
(
1997
).
73.
O. V.
Prezhdo
and
V. V.
Kisil
,
Phys. Rev. A
56
,
162
(
1997
).
74.
R.
Kapral
and
G.
Ciccotti
,
J. Chem. Phys.
110
,
8919
(
1999
).
75.
J.
Caro
and
L. L.
Salcedo
,
Phys. Rev. A
60
,
842
(
1999
).
76.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
121
,
3393
(
2004
).
77.
S. A.
Egorov
,
E.
Rabani
, and
B. J.
Berne
,
J. Chem. Phys.
110
,
5238
(
1999
).
78.
E.
Roman
and
C. C.
Martens
,
J. Chem. Phys.
121
,
11572
(
2004
).
79.
G.
Hanna
and
E.
Geva
,
J. Phys. Chem. B
113
,
9278
(
2009
).
80.
D. J.
Tannor
,
Introduction to Quantum Mechanics: A Time Dependent Perspective
(
University Science Books
,
2006
).
81.
M. D.
Feit
and
J. A.
Fleck
, Jr.
,
J. Chem. Phys.
78
,
301
(
1983
).
83.
R. B.
Sidje
,
ACM Trans. Math. Softw.
24
,
130
(
1998
).
84.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al., Molpro, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
85.
Note that due to the presence of nonadiabatic couplings even electronic levels which lie outside of the specific energy range may influence the spectrum and care has to be taken as to which states may be neglected.
86.
T. J.
Martínez
,
M.
Ben-Nun
, and
R. D.
Levine
,
J. Phys. Chem.
100
,
7884
(
1996
).
87.
I.
Burghardt
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
111
,
2927
(
1999
).
88.
I.
Burghardt
,
K.
Giri
, and
G. A.
Worth
,
J. Chem. Phys.
129
,
174104
(
2008
).
89.
P.
Siegbahn
,
A.
Heiberg
,
B.
Roos
, and
B.
Levy
,
Phys. Scr.
21
,
323
(
1980
).
90.
B. O.
Roos
,
P. R.
Taylor
, and
P. E.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
91.
P. E. M.
Siegbahn
,
J.
Almlöf
,
A.
Heiberg
, and
B. O.
Roos
,
J. Chem. Phys.
74
,
2384
(
1981
).
92.
U.
Werner
,
R.
Mitrić
, and
V.
Bonačić-Koutecký
,
J. Chem. Phys.
132
,
174301
(
2010
).
93.
J.-Y.
Fang
and
S.
Hammes-Schiffer
,
J. Phys. Chem. A
103
,
9399
(
1999
).
94.
G.
Granucci
,
M.
Persico
, and
A.
Zoccante
,
J. Chem. Phys.
133
,
134111
(
2010
).
95.
R.
Kosloff
,
A. D.
Hammerich
, and
D.
Tannor
,
Phys. Rev. Lett.
69
,
2172
(
1992
).
96.
In an experiment j with narrow laser beams,
$\vec{P}_{\vec{k}^{{\rm pr}}}^{j}$
Pk pr j
is the only component of
$\vec{P}^{j}$
Pj
contributing to the spectrum measured in direction
$\vec{k}^{{\rm pr}}$
k pr
.
You do not currently have access to this content.