We investigated the influence of compressive surface strain on the progression of oxygen reduction reaction (ORR) on Pt(111) surface using the density functional theory (DFT) calculation method. Specifically, we calculated the binding energies of all the chemical species possibly involved in ORR and the reaction energies (heat of reaction and activation energy) of all the possible ORR elementary reactions on the Pt(111) surfaces with −2% and −3% strain. Our DFT results indicate that all the ORR species bind more weakly on the compressively strained surfaces than on an unstrained surface owing to strain-induced d-electron band broadening. Our DFT calculations further predict that both OOH dissociation and HOOH dissociation pathways could be active for ORR on the Pt(111) surface with compressive strain between −2% and −3%. Moreover, the activation energies of the ORR rate-determining steps on the compressively strained Pt(111) surfaces were found to be lower than that on the unstrained Pt(111) surface. It was thus inferred that a −2% to −3% surface strain could lead to enhanced ORR activity on the Pt(111) catalysts. Consequently, our study suggests that tuning surface strain is an effective way to improve the performance of Pt-based electrocatalysts for ORR.

1.
W. T.
Yu
,
M. D.
Porosoff
, and
J. G. G.
Chen
,
Chem. Rev.
112
,
5780
(
2012
).
2.
J.
Greeley
and
J. K.
Nørskov
,
J. Phys. Chem. C
113
,
4932
(
2009
).
3.
J.
Greeley
,
I. E. L.
Stephens
,
A. S.
Bondarenko
,
T. P.
Johansson
,
H. A.
Hansen
,
T. F.
Jaramillo
,
J.
Rossmeisl
,
I.
Chorkendorff
, and
J. K.
Nørskov
,
Nat. Chem.
1
,
552
(
2009
).
4.
V.
Stamenkovic
,
B. S.
Mun
,
K. J. J.
Mayrhofer
,
P. N.
Ross
,
N. M.
Markovic
,
J.
Rossmeisl
,
J.
Greeley
, and
J. K.
Nørskov
,
Angew. Chem., Int. Ed.
45
,
2897
(
2006
).
5.
V. R.
Stamenkovic
,
B.
Fowler
,
B. S.
Mun
,
G. F.
Wang
,
P. N.
Ross
,
C. A.
Lucas
, and
N. M.
Markovic
,
Science
315
,
493
(
2007
).
6.
V. R.
Stamenkovic
,
B. S.
Mun
,
M.
Arenz
,
K. J. J.
Mayrhofer
,
C. A.
Lucas
,
G. F.
Wang
,
P. N.
Ross
, and
N. M.
Markovic
,
Nat. Mater.
6
,
241
(
2007
).
7.
P.
Strasser
,
S.
Koh
,
T.
Anniyev
,
J.
Greeley
,
K.
More
,
C. F.
Yu
,
Z. C.
Liu
,
S.
Kaya
,
D.
Nordlund
,
H.
Ogasawara
,
M. F.
Toney
, and
A.
Nilsson
,
Nat. Chem.
2
,
454
(
2010
).
8.
J.
Zhang
,
K.
Sasaki
,
E.
Sutter
, and
R. R.
Adzic
,
Science
315
,
220
(
2007
).
9.
L.
Zhang
,
R.
Iyyamperumal
,
D. F.
Yancey
,
R. M.
Crooks
, and
G.
Henkelman
,
ACS Nano
7
,
9168
(
2013
).
10.
H. A.
Gasteiger
and
N. M.
Markovic
,
Science
324
,
48
(
2009
).
11.
K. A.
Kuttiyiel
,
K.
Sasaki
,
Y.
Choi
,
D.
Su
,
P.
Liu
, and
R. R.
Adzic
,
Energy Environ. Sci.
5
,
5297
(
2012
).
12.
J. Y.
Park
,
Y.
Zhang
,
M.
Grass
,
T.
Zhang
, and
G. A.
Somorjai
,
Nano Lett.
8
,
673
(
2008
).
13.
S.
Alayoglu
,
A. U.
Nilekar
,
M.
Mavrikakis
, and
B.
Eichhorn
,
Nat. Mater.
7
,
333
(
2008
).
14.
A. U.
Nilekar
,
S.
Alayoglu
,
B.
Eichhorn
, and
M.
Mavrikakis
,
J. Am. Chem. Soc.
132
,
7418
(
2010
).
15.
F.
Studt
,
I.
Sharafutdinov
,
F.
Abild-Pedersen
,
C. F.
Elkjaer
,
J. S.
Hummelshoj
,
S.
Dahl
,
I.
Chorkendorff
, and
J. K.
Nørskov
,
Nat. Chem.
6
,
320
(
2014
).
16.
S.
Siahrostami
,
A.
Verdaguer-Casadevall
,
M.
Karamad
,
D.
Deiana
,
P.
Malacrida
,
B.
Wickman
,
M.
Escudero-Escribano
,
E. A.
Paoli
,
R.
Frydendal
,
T. W.
Hansen
,
I.
Chorkendorff
,
I. E. L.
Stephens
, and
J.
Rossmeisl
,
Nat. Mater.
12
,
1137
(
2013
).
17.
D. A.
Hansgen
,
D. G.
Vlachos
, and
J. G. G.
Chen
,
Nat. Chem.
2
,
484
(
2010
).
18.
M.
Mavrikakis
,
B.
Hammer
, and
J. K.
Nørskov
,
Phys. Rev. Lett.
81
,
2819
(
1998
).
19.
T.
Bligaard
and
J. K.
Nørskov
,
Electrochim. Acta
52
,
5512
(
2007
).
20.
J. R.
Kitchin
,
J. K.
Nørskov
,
M. A.
Barteau
, and
J. G.
Chen
,
Phys. Rev. Lett.
93
,
156801
(
2004
).
21.
K. A.
Kuttiyiel
,
K.
Sasaki
,
Y. M.
Choi
,
D.
Su
,
P.
Liu
, and
R. R.
Adzic
,
Nano Lett.
12
,
6266
(
2012
).
22.
K.
Sasaki
,
H.
Naohara
,
Y.
Cai
,
Y. M.
Choi
,
P.
Liu
,
M. B.
Vukmirovic
,
J. X.
Wang
, and
R. R.
Adzic
,
Angew. Chem., Int. Ed.
49
,
8602
(
2010
).
23.
K.
Sasaki
,
H.
Naohara
,
Y. M.
Choi
,
Y.
Cai
,
W. F.
Chen
,
P.
Liu
, and
R. R.
Adzic
,
Nat. Commun.
3
,
1115
(
2012
).
24.
T.
He
,
E.
Kreidler
,
L.
Xiong
,
J.
Luo
, and
C. J.
Zhong
,
J. Electrochem. Soc.
153
,
A1637
(
2006
).
25.
T.
He
,
E.
Kreidler
,
L. F.
Xiong
, and
E. R.
Ding
,
J. Power Sources
165
,
87
(
2007
).
26.
Y. G.
Ma
and
P. B.
Balbuena
,
J. Phys. Chem. C
112
,
14520
(
2008
).
27.
A. B.
Anderson
,
J.
Roques
,
S.
Mukerjee
,
V. S.
Murthi
,
N. M.
Markovic
, and
V.
Stamenkovic
,
J. Phys. Chem. B
109
,
1198
(
2005
).
28.
J. R.
Kitchin
,
J. K.
Nørskov
,
M. A.
Barteau
, and
J. G.
Chen
,
J. Chem. Phys.
120
,
10240
(
2004
).
29.
X.
Zhang
and
G.
Lu
,
J. Phys. Chem. Lett.
5
,
292
(
2014
).
30.
P.
Mani
,
R.
Srivastava
, and
P.
Strasser
,
J. Phys. Chem. C
112
,
2770
(
2008
).
31.
J. A.
Keith
and
T.
Jacob
,
Angew. Chem., Int. Ed.
49
,
9521
(
2010
).
32.
J. A.
Keith
,
G.
Jerkiewicz
, and
T.
Jacob
,
ChemPhysChem
11
,
2779
(
2010
).
33.
Y. G.
Ma
and
P. B.
Balbuena
,
J. Electrochem. Soc.
157
,
B959
(
2010
).
34.
G. E.
Ramirez-Caballero
,
Y. G.
Ma
,
R.
Callejas-Tovar
, and
P. B.
Balbuena
,
Phys. Chem. Chem. Phys.
12
,
2209
(
2010
).
35.
Z. Y.
Duan
and
G. F.
Wang
,
Phys. Chem. Chem. Phys.
13
,
20178
(
2011
).
36.
D.
Manogaran
and
G. S.
Hwang
,
Phys. Chem. Chem. Phys.
15
,
12118
(
2013
).
37.
Y. G.
Suo
,
L.
Zhuang
, and
J. T.
Lu
,
Angew. Chem., Int. Ed.
46
,
2862
(
2007
).
38.
H. C.
Ham
,
D.
Manogaran
,
K. H.
Lee
,
K.
Kwon
,
S. A.
Jin
,
D. J.
You
,
C.
Pak
, and
G. S.
Hwang
,
J. Chem. Phys.
139
,
201104
(
2013
).
39.
W.
An
and
P.
Liu
,
J. Phys. Chem. C
117
,
16144
(
2013
).
40.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev. B
136
,
B864
(
1964
).
41.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
1133
(
1965
).
42.
G.
Kresse
and
J.
Furthmuller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
43.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
48
,
13115
(
1993
).
44.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
45.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
46.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
47.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jonsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
48.
H. S.
Casalongue
,
S.
Kaya
,
V.
Viswanathan
,
D. J.
Miller
,
D.
Friebel
,
H. A.
Hansen
,
J. K.
Nørskov
,
A.
Nilsson
, and
H.
Ogasawara
,
Nat. Commun.
4
,
2817
(
2013
).
49.
Y.
Xu
,
A. V.
Ruban
, and
M.
Mavrikakis
,
J. Am. Chem. Soc.
126
,
4717
(
2004
).
50.
W. A.
Harrison
,
Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond
(
Dover Publications
,
New York
,
1989
).
51.
L.
Grabow
,
Y.
Xu
, and
M.
Mavrikakis
,
Phys. Chem. Chem. Phys.
8
,
3369
(
2006
).
52.
J. N.
Bronsted
,
Chem. Rev.
5
,
231
(
1928
).
53.
M. G.
Evans
and
M.
Polanyi
,
Trans. Faraday Soc.
34
,
11
(
1938
).
54.
J. K.
Nørskov
,
J.
Rossmeisl
,
A.
Logadottir
,
L.
Lindqvist
,
J. R.
Kitchin
,
T.
Bligaard
, and
H.
Jonsson
,
J. Phys. Chem. B
108
,
17886
(
2004
).
55.
56.
L. A.
Näslund
,
J. Chem. Phys.
140
,
104701
(
2014
).
57.
J.
Greeley
and
M.
Mavrikakis
,
Nat. Mater.
3
,
810
(
2004
).
58.
C.
Wang
,
D. G.
Li
,
M. F.
Chi
,
J.
Pearson
,
R. B.
Rankin
,
J.
Greeley
,
Z. Y.
Duan
,
G. F.
Wang
,
D.
van der Vliet
,
K. L.
More
,
N. M.
Markovic
, and
V. R.
Stamenkovic
,
J. Phys. Chem. Lett.
3
,
1668
(
2012
).
59.
C.
Wang
,
M. F.
Chi
,
D. G.
Li
,
D.
Strmcnik
,
D.
van der Vliett
,
G. F.
Wang
,
V.
Komanicky
,
K. C.
Chang
,
A. P.
Paulikas
,
D.
Tripkovic
,
J.
Pearson
,
K. L.
More
,
N. M.
Markovic
, and
V. R.
Stamenkovic
,
J. Am. Chem. Soc.
133
,
14396
(
2011
).
60.
J.
Greeley
,
T. F.
Jaramillo
,
J.
Bonde
,
I. B.
Chorkendorff
, and
J. K.
Nørskov
,
Nat. Mater.
5
,
909
(
2006
).
61.
Y. H.
Zhang
,
Z. Y.
Duan
,
C.
Xiao
, and
G. F.
Wang
,
Surf. Sci.
605
,
1577
(
2011
).
62.
Y. G.
Ma
and
P. B.
Balbuena
,
Surf. Sci.
602
,
107
(
2008
).
You do not currently have access to this content.