Obtaining quantitative agreement between theory and experiment for dissociative adsorption of hydrogen on and associative desorption of hydrogen from Cu(111) remains challenging. Particularly troubling is the fact that theory gives values for the high energy limit to the dissociative adsorption probability that is as much as two times larger than experiment. In the present work we approach this discrepancy in three ways. First, we carry out a new analysis of the raw experimental data for D2 associatively desorbing from Cu(111). We also perform new ab initio molecular dynamics (AIMD) calculations that include effects of surface atom motion. Finally, we simulate time-of-flight (TOF) spectra from the theoretical reaction probability curves and we directly compare them to the raw experimental data. The results show that the use of more flexible functional forms for fitting the raw TOF spectra gives fits that are in slightly better agreement with the raw data and in considerably better agreement with theory, even though the theoretical reaction probabilities still achieve higher values at high energies. The mean absolute error (MAE) for the energy E0 at which the reaction probability equals half the experimental saturation value is now lower than 1 kcal/mol, the limit that defines chemical accuracy, while a MAE of 1.5 kcal/mol was previously obtained. The new AIMD results are only slightly different from the previous static surface results and in slightly better agreement with experiment.

1.
G. J.
Kroes
,
Phys. Chem. Chem. Phys.
14
,
14966
(
2012
).
2.
P.
Nieto
,
E.
Pijper
,
D.
Barredo
,
G.
Laurent
,
R. A.
Olsen
,
E. J.
Baerends
,
G. J.
Kroes
, and
D.
Farías
,
Science
312
,
86
(
2006
).
3.
A. C.
Luntz
and
M.
Persson
,
J. Chem. Phys.
123
,
074704
(
2005
).
4.
J. I.
Juaristi
,
M.
Alducin
,
R.
Díez Muiño
,
H. F.
Busnengo
, and
A.
Salin
,
Phys. Rev. Lett.
100
,
116102
(
2008
).
5.
G.
Anger
,
A.
Winkler
, and
K. D.
Rendulic
,
Surf. Sci.
220
,
1
(
1989
).
6.
H. F.
Berger
,
M.
Leisch
,
A.
Winkler
, and
K. D.
Rendulic
,
Chem. Phys. Lett.
175
,
425
(
1990
).
7.
H. A.
Michelsen
and
D. J.
Auerbach
,
J. Chem. Phys.
94
,
7502
(
1991
).
8.
A.
Hodgson
,
J.
Moryl
,
P.
Traversaro
, and
H.
Zhao
,
Nature
356
,
501
(
1992
).
9.
H. A.
Michelsen
,
C. T.
Rettner
, and
D. J.
Auerbach
,
Phys. Rev. Lett.
69
,
2678
(
1992
).
10.
H. A.
Michelsen
,
C. T.
Rettner
, and
D. J.
Auerbach
,
Surf. Sci.
272
,
65
(
1992
).
11.
C. T.
Rettner
,
D. J.
Auerbach
, and
H. A.
Michelsen
,
Phys. Rev. Lett.
68
,
1164
(
1992
).
12.
C. T.
Rettner
,
D. J.
Auerbach
, and
H. A.
Michelsen
,
Phys. Rev. Lett.
68
,
2547
(
1992
).
13.
H. A.
Michelsen
,
C. T.
Rettner
,
D. J.
Auerbach
, and
R. N.
Zare
,
J. Chem. Phys.
98
,
8294
(
1993
).
14.
C. T.
Rettner
,
H. A.
Michelsen
, and
D. J.
Auerbach
,
Chem. Phys.
175
,
157
(
1993
).
15.
C. T.
Rettner
,
H. A.
Michelsen
, and
D. J.
Auerbach
,
Faraday Discuss.
96
,
17
(
1993
).
16.
C. T.
Rettner
,
H. A.
Michelsen
, and
D. J.
Auerbach
,
J. Chem. Phys.
102
,
4625
(
1995
).
17.
D.
Wetzig
,
M.
Rutkowski
,
R.
David
, and
H.
Zacharias
,
Europhys. Lett.
36
,
31
(
1996
).
18.
S. J.
Gulding
,
A. M.
Wodtke
,
H.
Hou
,
C. T.
Rettner
,
H. A.
Michelsen
, and
D. J.
Auerbach
,
J. Chem. Phys.
105
,
9702
(
1996
).
19.
H.
Hou
,
S. J.
Gulding
,
C. T.
Rettner
,
A. M.
Wodtke
, and
D. J.
Auerbach
,
Science
277
,
80
(
1997
).
20.
A.
Hodgson
,
P.
Samson
,
A.
Wight
, and
C.
Cottrell
,
Phys. Rev. Lett.
78
,
963
(
1997
).
21.
M. J.
Murphy
and
A.
Hodgson
,
J. Chem. Phys.
108
,
4199
(
1998
).
22.
U.
Nielsen
,
D.
Halstead
,
S.
Holloway
, and
J. K.
Nørskov
,
J. Chem. Phys.
93
,
2879
(
1990
).
23.
G. R.
Darling
and
S.
Holloway
,
J. Chem. Phys.
97
,
734
(
1992
).
24.
J.
Sheng
and
J. Z. H.
Zhang
,
J. Chem. Phys.
99
,
1373
(
1993
).
25.
A.
Gross
,
B.
Hammer
,
M.
Scheffler
, and
W.
Brenig
,
Phys. Rev. Lett.
73
,
3121
(
1994
).
26.
B.
Hammer
,
M.
Scheffler
,
K. W.
Jacobsen
, and
J. K.
Nørskov
,
Phys. Rev. Lett.
73
,
1400
(
1994
).
27.
A.
Forni
,
G.
Wiesenekker
,
E. J.
Baerends
, and
G. F.
Tantardini
,
Int. J. Quantum Chem.
52
,
1067
(
1994
).
28.
G. R.
Darling
and
S.
Holloway
,
J. Chem. Phys.
101
,
3268
(
1994
).
29.
G. R.
Darling
and
S.
Holloway
,
Surf. Sci.
321
,
L189
(
1994
).
30.
G. R.
Darling
and
S.
Holloway
,
Surf. Sci.
307–309
,
153
(
1994
).
31.
J. Q.
Dai
,
J.
Sheng
, and
J. Z. H.
Zhang
,
J. Chem. Phys.
101
,
1555
(
1994
).
32.
J. Q.
Dai
and
J. Z. H.
Zhang
,
Surf. Sci.
319
,
193
(
1994
).
33.
J. Q.
Dai
and
J. Z. H.
Zhang
,
J. Chem. Phys.
102
,
6280
(
1995
).
34.
A.
Forni
,
G.
Wiesenekker
,
E. J.
Baerends
, and
G. F.
Tantardini
,
J. Phys.: Condens. Matter
7
,
7195
(
1995
).
35.
J. Q.
Dai
and
J. C.
Light
,
J. Chem. Phys.
107
,
1676
(
1997
).
36.
J. Q.
Dai
and
J. C.
Light
,
J. Chem. Phys.
108
,
7816
(
1998
).
37.
M. F.
Somers
,
S. M.
Kingma
,
E.
Pijper
,
G. J.
Kroes
, and
D.
Lemoine
,
Chem. Phys. Lett.
360
,
390
(
2002
).
38.
S.
Nave
,
D.
Lemoine
,
M. F.
Somers
,
S. M.
Kingma
, and
G. J.
Kroes
,
J. Chem. Phys.
122
,
214709
(
2005
).
39.
C.
Díaz
,
E.
Pijper
,
R. A.
Olsen
,
H. F.
Busnengo
,
D. J.
Auerbach
, and
G. J.
Kroes
,
Science
326
,
832
(
2009
).
40.
C.
Díaz
,
R. A.
Olsen
,
D. J.
Auerbach
, and
G. J.
Kroes
,
Phys. Chem. Chem. Phys.
12
,
6499
(
2010
).
41.
G. J.
Kroes
,
C.
Díaz
,
E.
Pijper
,
R. A.
Olsen
, and
D. J.
Auerbach
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
20881
(
2010
).
42.
M.
Bonfanti
,
C.
Díaz
,
M. F.
Somers
, and
G. J.
Kroes
,
Phys. Chem. Chem. Phys.
13
,
4552
(
2011
).
43.
F.
Nattino
,
C.
Díaz
,
B.
Jackson
, and
G. J.
Kroes
,
Phys. Rev. Lett.
108
,
236104
(
2012
).
44.
M.
Wijzenbroek
and
M. F.
Somers
,
J. Chem. Phys.
137
,
054703
(
2012
).
45.
A. S.
Muzas
,
J. I.
Juaristi
,
M.
Alducin
,
R.
Díez Muiño
,
G. J.
Kroes
, and
C.
Díaz
,
J. Chem. Phys.
137
,
064707
(
2012
).
46.
M.
Bonfanti
,
M. F.
Somers
,
C.
Díaz
,
H. F.
Busnengo
, and
G. J.
Kroes
,
Z. Phys. Chem.
227
,
1397
(
2013
).
47.
S. B.
Donald
and
I.
Harrison
,
J. Phys. Chem. C
118
,
320
(
2014
).
48.
D. L.
Diedrich
and
J. B.
Anderson
,
Science
258
,
786
(
1992
).
49.
D.
Neuhauser
,
R. S.
Judson
,
D. J.
Kouri
,
D. E.
Adelman
,
N. E.
Shafer
,
D. A. V.
Kliner
, and
R. N.
Zare
,
Science
257
,
519
(
1992
).
50.
S. C.
Althorpe
,
F.
Fernandez-Alonso
,
B. D.
Bean
,
J. D.
Ayers
,
A. E.
Pomerantz
,
R. N.
Zare
, and
E.
Wrede
,
Nature
416
,
67
(
2002
).
51.
S. A.
Harich
,
D.
Dai
,
C. C.
Wang
,
X.
Yang
,
S. D.
Chao
, and
R. T.
Skodje
,
Nature
419
,
281
(
2002
).
52.
J. C.
Juanes-Marcos
,
S. C.
Althorpe
, and
E.
Wrede
,
Science
309
,
1227
(
2005
).
53.
S. J.
Greaves
,
E.
Wrede
,
N. T.
Goldberg
,
J.
Zhang
,
D. J.
Miller
, and
R. N.
Zare
,
Nature
454
,
88
(
2008
).
54.
D. G.
Fleming
,
D. J.
Arseneau
,
O.
Sukhorukov
,
J. H.
Brewer
,
S. L.
Mielke
,
G. C.
Schatz
,
B. C.
Garrett
,
K. A.
Peterson
, and
D. G.
Truhlar
,
Science
331
,
448
(
2011
).
55.
A.
Chakraborty
,
Y.
Zhao
,
H.
Lin
, and
D. G.
Truhlar
,
J. Chem. Phys.
124
,
044315
(
2006
).
56.
Y. Y.
Chuang
,
M. L.
Radhakrishnan
,
P. L.
Fast
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. A
103
,
4893
(
1999
).
57.
E. E.
Marinero
,
C. T.
Rettner
, and
R. N.
Zare
,
Phys. Rev. Lett.
48
,
1323
(
1982
).
58.
M.
Hand
and
J.
Harris
,
J. Chem. Phys.
92
,
7610
(
1990
).
59.
H. F.
Busnengo
,
W.
Dong
,
P.
Sautet
, and
A.
Salin
,
Phys. Rev. Lett.
87
,
127601
(
2001
).
60.
S. J.
Klippenstein
,
V. S.
Pande
, and
D. G.
Truhlar
,
J. Am. Chem. Soc.
136
,
528
(
2014
).
61.
Ž.
Šljivančanin
and
B.
Hammer
,
Phys. Rev. B
65
,
085414
(
2002
).
62.
T.
Zambelli
,
J.
Wintterlin
,
J.
Trost
, and
G.
Ertl
,
Science
273
,
1688
(
1996
).
63.
S.
Dahl
,
A.
Logadottir
,
R. C.
Egeberg
,
J. H.
Larsen
,
I.
Chorkendorff
,
E.
Tornqvist
, and
J. K.
Nørskov
,
Phys. Rev. Lett.
83
,
1814
(
1999
).
64.
G.
Comsa
and
R.
David
,
Surf. Sci.
117
,
77
(
1982
).
65.
L.
Sementa
,
M.
Wijzenbroek
,
B. J.
van Kolck
,
M. F.
Somers
,
A.
Al-Halabi
,
H. F.
Busnengo
,
R. A.
Olsen
,
G. J.
Kroes
,
M.
Rutkowski
,
C.
Thewes
,
N. F.
Kleimeier
, and
H.
Zacharias
,
J. Chem. Phys.
138
,
044708
(
2013
).
66.
K.
Gundersen
,
K. W.
Jacobsen
,
J. K.
Nørskov
, and
B.
Hammer
,
Surf. Sci.
304
,
131
(
1994
).
67.
M.
Karikorpi
,
S.
Holloway
,
N.
Henriksen
, and
J. K.
Nørskov
,
Surf. Sci.
179
,
L41
(
1987
).
68.
H. E.
Pfnür
,
C. T.
Rettner
,
J.
Lee
,
R. J.
Madix
, and
D. J.
Auerbach
,
J. Chem. Phys.
85
,
7452
(
1986
).
69.
R.
Bisson
,
M.
Sacchi
,
T. T.
Dang
,
B.
Yoder
,
P.
Maroni
, and
R. D.
Beck
,
J. Phys. Chem. A
111
,
12679
(
2007
).
70.
P. M.
Holmblad
,
J.
Wambach
, and
I.
Chorkendorff
,
J. Chem. Phys.
102
,
8255
(
1995
).
71.
P. M.
Hundt
,
B.
Jiang
,
M. E.
van Reijzen
,
H.
Guo
, and
R. D.
Beck
,
Science
344
,
504
(
2014
).
72.
See supplementary material at http://dx.doi.org/10.1063/1.4896058 for barrier heights and geometries in the SRP-PES for high symmetry impact sites; BOSS and AIMD reaction probability curve fitting results; experimental TOF spectra fitting parameters; W, W1, and W2 parameters computed for LGS experimental reaction probability curves; adsorption experiment fits plotted on a linear scale.
73.
A.
Groß
and
A.
Dianat
,
Phys. Rev. Lett.
98
,
206107
(
2007
).
74.
A.
De Vita
,
I.
Štich
,
M. J.
Gillan
,
M. C.
Payne
, and
L. J.
Clarke
,
Phys. Rev. Lett.
71
,
1276
(
1993
).
75.
I. E.
Leksina
and
S. I.
Novikova
,
Sov. Phys. Solid State
5
,
798
(
1963
).
76.
F. R.
Kroeger
and
C. A.
Swenson
,
J. Appl. Phys.
48
,
853
(
1977
).
77.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
78.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
79.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
80.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
81.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
82.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
83.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
48
,
4978
(
1993
).
84.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
85.
A.
Mondal
,
M.
Wijzenbroek
,
M.
Bonfanti
,
C.
Díaz
, and
G. J.
Kroes
,
J. Phys. Chem. A
117
,
8770
(
2013
).
86.
E. B.
Wilson
,
J. Am. Statist. Assoc.
22
,
209
(
1927
).
87.
T. A.
Louis
,
Am. Stat.
35
,
154
(
1981
).
88.
A. C.
Luntz
,
J. Chem. Phys.
102
,
8264
(
1995
).
89.
L. B. F.
Juurlink
,
D. R.
Killelea
, and
A. L.
Utz
,
Prog. Surf. Sci.
84
,
69
(
2009
).
90.
A. C.
Luntz
,
J. Chem. Phys.
113
,
6901
(
2000
).
91.
R. A.
Olsen
,
G. J.
Kroes
,
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
,
J. Chem. Phys.
121
,
9776
(
2004
).
93.
K.
Levenberg
,
Q. Appl. Math.
2
,
164
(
1944
).
94.
D.
Marquardt
,
J. Soc. Ind. Appl. Math.
11
,
431
(
1963
).
95.
J. J.
Moré
,
D. C.
Sorensen
,
K. E.
Hillstrom
, and
B. S.
Garbow
, The MINPACK Project, in
Sources and Development of Mathematical Software
, edited by
W. J.
Cowell
(
Prentice-Hall
,
Englewood Cliffs
,
1984
), pp.
88
111
.
96.
J. J.
Moré
,
B. S.
Garbow
, and
K. E.
Hillstrom
,
User Guide for MINPACK-1
, Argonne National Laboratory Report No. ANL-80-74 (
Argonne
,
1980
).

Supplementary Material

You do not currently have access to this content.