We discuss how surface roughness influences the adhesion between elastic solids. We introduce a Tabor number which depends on the length scale or magnification, and which gives information about the nature of the adhesion at different length scales. We consider two limiting cases relevant for (a) elastically hard solids with weak (or long ranged) adhesive interaction (DMT-limit) and (b) elastically soft solids with strong (or short ranged) adhesive interaction (JKR-limit). For the former cases we study the nature of the adhesion using different adhesive force laws (Fun, n = 1.5–4, where u is the wall-wall separation). In general, adhesion may switch from DMT-like at short length scales to JKR-like at large (macroscopic) length scale. We compare the theory predictions to results of exact numerical simulations and find good agreement between theory and simulation results.

1.
F. P.
Bowden
and
D.
Tabor
,
Friction and Lubrication of Solids
(
Wiley
,
New York
,
1956
).
2.
K. L.
Johnson
,
Contact Mechanics
(
Cambridge University Press
,
Cambridge
,
1966
).
3.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic
,
London
,
1995
).
4.
B. N. J.
Persson
,
Sliding Friction: Physical Principles and Applications
, 2nd ed. (
Springer
,
Heidelberg
,
2000
).
5.
B. N. J.
Persson
,
O.
Albohr
,
U.
Tartaglino
,
A. I.
Volokitin
, and
E.
Tosatti
,
J. Phys.: Condens. Matter
17
,
R1
(
2005
).
6.
B. N. J.
Persson
,
Surf. Sci. Rep.
61
,
201
(
2006
).
7.
K. N. G.
Fuller
and
D.
Tabor
,
Proc. R. Soc. London, Ser. A
345
,
327
(
1975
).
8.
B. V.
Derjaguin
,
V. M.
Muller
, and
Yu. P.
Toporov
,
J. Colloid. Interf. Sci.
53
(
2
),
314
326
(
1975
).
9.
K. L.
Johnson
,
K.
Kendall
, and
A. D.
Roberts
,
Proc. R. Soc. London, Ser. A
324
,
301
(
1971
).
10.
J. A.
Greenwood
and
J. B. P.
Williamson
,
Proc. R. Soc. London, Ser. A
295
,
300
(
1966
).
11.
K. L.
Johnson
and
J. A.
Greenwood
,
J. Colloid Interface Sci.
192
,
326
(
1997
).
12.
D.
Maugis
,
J. Adhes. Sci. Technol.
10
(
2
),
161
175
(
1996
).
13.
W. B.
Dapp
,
N.
Prodanov
, and
M. H.
Müser
,
J. Phys.: Condens. Matter
26
,
355002
(
2014
).
14.
N.
Prodanov
,
W. B.
Dapp
, and
M. H.
Müser
,
Tribol. Lett.
53
,
433
(
2014
).
15.
G.
Carbone
and
F.
Bottiglione
,
J. Mech. Phys. Solids
56
,
2555
(
2008
).
16.
C.
Campana
,
M. H.
Müser
, and
M. O.
Robbins
,
J. Phys.: Condens. Matter
20
,
354013
(
2008
).
17.
W. B.
Dapp
,
A.
Lücke
,
B. N. J.
Persson
, and
M. H.
Müser
,
Phys. Rev. Lett.
108
,
244301
(
2012
).
18.
L.
Pastewka
and
M. O.
Robbins
,
Proc. Natl. Acad. Sci. U.S.A.
111
,
3298
(
2014
).
19.
S.
Medina
and
D.
Dini
,
Int. J. Solids Struct.
51
,
2620
(
2014
).
20.
N.
Mulakaluri
and
B. N. J.
Persson
,
EPL
96
,
66003
(
2011
).
21.
G.
Carbone
,
M.
Scaraggi
, and
U.
Tartaglino
,
Eur. Phys. J. E
30
,
65
(
2009
).
22.
A. G.
Peressadko
,
N.
Hosoda
, and
B. N. J.
Persson
,
Phys. Rev. Lett.
95
,
124301
(
2005
).
23.
B.
Lorenz
,
B. A.
Krick
,
N.
Mulakaluri
,
M.
Smolyakova
,
S.
Dieluweit
,
W. G.
Sawyer
, and
B. N. J.
Persson
,
J. Phys.: Condens. Matter
25
,
225004
(
2013
).
24.
B. A.
Krick
,
J. R.
Vail
,
B. N. J.
Persson
, and
W. G.
Sawyer
,
Tribol. Lett.
45
,
185
(
2012
).
25.
K.
Autumn
,
MRS Bull.
32
,
473
(
2007
).
26.
L.
Heepe
and
S.
Gorb
,
Annu. Rev. Mater. Res.
44
,
173
203
(
2014
).
27.
B. N. J.
Persson
,
J. Chem. Phys.
118
,
7614
(
2003
).
28.
B. N. J.
Persson
and
S.
Gorb
,
J. Chem. Phys.
119
,
11437
(
2003
).
29.
B. N. J.
Persson
,
C.
Ganser
,
F.
Schmied
,
C.
Teichert
,
R.
Schennach
,
E.
Gilli
, and
U.
Hirn
,
J. Phys. C: Condens. Matter
25
,
045002
(
2013
).
30.
B. N. J.
Persson
,
A.
Kovalev
, and
S. N.
Gorb
,
Tribol. Lett.
50
,
17
(
2013
).
31.
B. N. J.
Persson
,
J. Phys. C: Condens. Matter
19
,
376110
(
2007
).
32.
B. V.
Derjaguin
and
V.
Smilga
,
J. Appl. Phys.
38
,
4609
(
1967
).
33.
A. D.
Roberts
,
J. Phys. D: Appl. Phys.
10
,
1801
(
1977
).
34.
B. N. J.
Persson
,
M.
Scaraggi
,
A. I.
Volokitin
, and
M. K.
Chaudhury
,
EPL
103
,
36003
(
2013
).
35.
K.
Brörmann
,
K.
Burger
,
A.
Jagota
, and
R.
Bennewitz
,
J. Adhes.
88
,
589
607
(
2012
).
36.
D.
Maugis
,
J. Colloid Interface Sci.
150
,
243
(
1992
).
37.
E.
Barthel
,
J. Phys. D: Appl. Phys.
41
,
163001
(
2008
).
38.
V. M.
Müller
,
V. S.
Yushenko
, and
B. V.
Derjaguin
,
J. Colloid Interface Sci.
77
,
91
(
1980
).
39.
J. A.
Greenwood
,
Proc. R. Soc. Lond. A
453
,
1277
1297
(
1997
).
40.
M. H.
Müser
,
Beilstein J. Nanotechnol.
5
,
419
(
2014
).
41.
B. N. J.
Persson
,
Eur. Phys. J. E
8
,
385
(
2002
).
42.
B. N. J.
Persson
,
J. Chem. Phys.
115
,
3840
(
2001
).
43.
B. N. J.
Persson
,
Phys. Rev. Lett.
99
,
125502
(
2007
).
44.
C.
Yang
and
B. N. J.
Persson
,
J. Phys. Condens. Matter
20
,
215214
(
2008
).
45.
A.
Almqqvist
,
C.
Campana
,
N.
Prodanov
, and
B. N. J.
Persson
,
J. Mech. Phys. Solids
59
,
2355
(
2011
).
46.
B. N. J.
Persson
,
J. Phys.: Condens. Matter
20
(
31
),
312001
(
2008
).
47.
G.
Carbone
,
B.
Lorenz
,
B. N. J.
Persson
, and
A.
Wohlers
,
Eur. Phys. J. E
29
,
275
(
2009
).
48.
P. R.
Nayak
,
J. Lubr. Technol.
93
,
398
(
1971
).
49.
In general, in order for elastic instabilities to occur in contact mechanics and sliding friction the material must be soft enough. This is most easily understood in the context of a particle in a periodic potential U(x) and connected to an elastic spring k the free end of which is moving parallel to the corrugated potential (x-direction) (Tomlinson model of sliding friction). In this case energy will be dissipated in rapid slip events only if the spring is soft enough (see, e.g., Ref. 4 for a discussion of this point).
50.
B. N. J.
Persson
,
J. Phys.: Condens. Matter
24
,
095008
(
2012
).
51.
B. V.
Derjaguin
,
Kolloid Z.
69
,
155
164
(
1934
).
52.
C.
Jin
,
A.
Jagota
, and
C. Y.
Hui
,
J. Phys. D: Appl. Phys.
44
,
405303
(
2011
).
53.
The term augmented is used to identify a novel numerical technique developed here to increase the degree of continuity (and hence of accuracy) of the solution fields. In particular, the elastic integration problem is numerically formulated in the real space in term of finite elements with linear shape function. The consequent Fourier-transform of such a finite element model allows to obtain an augmented Eq. (2), i.e.,
$\sigma ( \mathbf {q}) =F ( \mathbf {q})M_{\mathrm{zz}}^{-1}\left( \mathbf {q}\right) w\left( \mathbf {q}\right)$
σ(q)=F(q)M zz 1qwq
, where F(q) corresponds to the Fourier transform of the shape function. This augmented formulation can be shown to be extremely useful to damp the numerical inaccuracy resulting from the adoption of viscoelastic bulk responses. The detailed derivation of the RMD numerical model will be presented in a dedicated contribution.
54.
K. L.
Johnson
,
Int. J. Solids Struct.
32
(
3/4
),
423
430
(
1995
).
You do not currently have access to this content.