General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller–Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc.97, 331 (1997);R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem.28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.

1.
J. L.
Whitten
,
J. Chem. Phys.
58
,
4496
(
1973
).
2.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).
3.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
,
359
(
1993
).
4.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
5.
A. P.
Rendell
and
T. J.
Lee
,
J. Chem. Phys.
101
,
400
(
1994
).
6.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
(
2002
).
7.
A.
Sodt
,
J. E.
Subotnik
, and
M.
Head-Gordon
,
J. Chem. Phys.
125
,
194109
(
2006
).
8.
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
J. Chem. Phys.
118
,
8149
(
2003
).
9.
A. E.
DePrince
and
C. D.
Sherrill
,
J. Chem. Theory Comput.
9
,
2687
(
2013
).
10.
U.
Bozkaya
,
J. Chem. Theory Comput.
10
,
2371
(
2014
).
11.
N. H. F.
Beebe
and
J.
Linderberg
,
Int. J. Quantum Chem.
12
,
683
(
1977
).
12.
I.
Roeggen
and
E.
Wisloff-Nilssen
,
Chem. Phys. Lett.
132
,
154
(
1986
).
13.
H.
Koch
,
A. S.
de Meras
, and
T. B.
Pedersen
,
J. Chem. Phys.
118
,
9481
(
2003
).
14.
F.
Aquilante
,
T. B.
Pedersen
, and
R.
Lindh
,
J. Chem. Phys.
126
,
194106
(
2007
).
15.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
16.
L.
Vogt
,
R.
Olivares-Amaya
,
S.
Kermes
,
Y.
Shao
,
C.
Amador-Bedolla
, and
A.
Aspuru-Guzik
,
J. Phys. Chem. A
112
,
2049
(
2008
).
17.
M.
Katouda
and
T.
Nakajima
,
J. Chem. Theory Comput.
112
,
5373
(
2013
).
18.
F.
Weigend
and
M.
Häser
,
Theor. Chem. Acc.
97
,
331
(
1997
).
19.
C.
Hättig
,
A.
Hellweg
, and
A.
Köhn
,
Phys. Chem. Chem. Phys.
8
,
1159
(
2006
).
20.
R. A.
Distasio
,
R. P.
Steele
,
Y. M.
Rhee
,
Y.
Shao
, and
M.
Head-Gordon
,
J. Comput. Chem.
28
,
839
(
2007
).
21.
J. M.
Turney
,
A. C.
Simmonett
,
R. M.
Parrish
,
E. G.
Hohenstein
,
F.
Evangelista
,
J. T.
Fermann
,
B. J.
Mintz
,
L. A.
Burns
,
J. J.
Wilke
,
M. L.
Abrams
,
N. J.
Russ
,
M. L.
Leininger
,
C. L.
Janssen
,
E. T.
Seidl
,
W. D.
Allen
,
H. F.
Schaefer
,
R. A.
King
,
E. F.
Valeev
,
C. D.
Sherrill
, and
T. D.
Crawford
,
WIREs Comput. Mol. Sci.
2
,
556
(
2012
).
22.
F.
Neese
,
WIREs Comput. Mol. Sci.
2
,
73
(
2012
).
23.
Y.
Shao
,
L.
Fusti-Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O'Neill
,
R. A.
DiStasio
,
R. C.
Lochan
,
T.
Wang
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T. V.
Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C. P.
Hsu
,
G.
Kedziora
,
R. Z.
Khaliullin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
24.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics
, 1st ed. (
Cambridge University Press
,
New York
,
2009
), pp.
443
449
.
25.
T. D.
Crawford
and
H. F.
Schaefer
,
Rev. Comput. Chem.
14
,
33
(
2000
).
26.
T.
Helgaker
and
P.
Jørgensen
,
Adv. Quantum Chem.
19
,
183
(
1988
).
27.
P.
Jørgensen
and
T.
Helgaker
,
J. Chem. Phys.
89
,
1560
(
1988
).
28.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
,
H. F.
Schaefer
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
104103
(
2011
).
29.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
138
,
184103
(
2013
).
30.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
139
,
054104
(
2013
).
31.
U.
Bozkaya
,
J. Chem. Phys.
139
,
104116
(
2013
).
32.
T. U.
Helgaker
and
J.
Almlöf
,
Int. J. Quantum Chem.
26
,
275
(
1984
).
33.
T. U.
Helgaker
, in
Geometrical Derivatives of Energy Surfaces and Molecular Properties
, edited by
P.
Jørgensen
and
J.
Simons
(
Reidel
,
Dordrecht
,
1986
), pp.
1
16
.
34.
J.
Simons
,
T. U.
Helgaker
, and
P.
Jørgensen
,
Chem. Phys.
86
,
413
(
1984
).
35.
R.
Shepard
, in
Modern Electronic Structure Theory Part I
, 1st ed.,
Advanced Series in Physical Chemistry
Vol.
2
, edited by
D. R.
Yarkony
(
World Scientific Publishing Company
,
London
,
1995
), pp.
345
458
.
36.
T.
Helgaker
, in
The Encyclopedia of Computational Chemistry
, edited by
P. R.
Schleyer
,
N. L.
Allinger
,
T.
Clark
,
J.
Gasteiger
,
P. A.
Kollman
,
H. F.
Schaefer
, and
P. R.
Schreiner
(
Wiley
,
Chichester
,
1998
), pp.
1157
1169
.
37.
Y.
Yamaguchi
,
Y.
Osamura
,
J. D.
Goddard
, and
H. F.
Schaefer
,
A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory
(
Oxford University Press
,
New York
,
1994
), pp.
29
52
128
143
.
38.
N. C.
Handy
and
H. F.
Schaefer
,
J. Chem. Phys.
81
,
5031
(
1984
).
39.
T.
Helgaker
,
P.
Jørgensen
, and
N.
Handy
,
Theor. Chem. Acc.
76
,
227
(
1989
).
40.
T.
Helgaker
and
P.
Jørgensen
,
Theor. Chem. Acc.
75
,
111
(
1989
).
41.
U.
Bozkaya
,
J. Chem. Phys.
139
,
154105
(
2013
).
42.
E.
Soydaş
and
U.
Bozkaya
,
J. Comput. Chem.
35
,
1073
(
2014
).
43.
U.
Bozkaya
,
J. Chem. Theory Comput.
10
,
2041
(
2014
).
44.
J. E.
Rice
and
R. D.
Amos
,
Chem. Phys. Lett.
122
,
585
(
1985
).
45.
Y.
Yamaguchi
, and
H. F.
Schaefer
, in
Handbook of High-Resolution Spectroscopies
, edited by
M.
Quack
and
F.
Merkt
(
John Wiley & Sons
,
2011
), pp.
325
362
.
46.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
47.
U.
Bozkaya
and
H. F.
Schaefer
,
J. Chem. Phys.
136
,
204114
(
2012
).
48.
U.
Bozkaya
,
J. Chem. Phys.
135
,
224103
(
2011
).
49.
E.
Soydaş
and
U.
Bozkaya
,
J. Chem. Theory Comput.
9
,
4679
(
2013
).
50.
K. K.
Baeck
,
J. D.
Watts
, and
R. J.
Bartlett
,
J. Chem. Phys.
107
,
3853
(
1997
).
51.
P.
Jurečka
,
J.
Šponer
,
J.
Černyá
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
52.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
53.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
54.
E.
Soydaş
and
U.
Bozkaya
,
J. Chem. Theory Comput.
9
,
1452
(
2013
).
55.
D.
Feller
,
J. Chem. Phys.
98
,
7059
(
1993
).
56.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
57.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
132
,
064308
(
2010
).
58.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
136
,
164303
(
2012
).
59.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
,
Chem. Phys. Lett.
302
,
437
(
1999
).
60.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
61.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
62.
R. J.
Bartlett
,
J. D.
Watts
,
S. A.
Kucharski
, and
J.
Noga
,
Chem. Phys. Lett.
165
,
513
(
1990
).
63.
See supplementary material at http://dx.doi.org/10.1063/1.4896235 for total and correlation energies from DF-MP2 and RI-MP2 methods.
64.
D.
Cremer
, in
Encyclopedia of Computational Chemistry
, Vol.
3
, edited by
P. V. R.
Schleyer
(
John Wiley & Sons
,
Chichester
,
1998
), pp.
1706
1735
.
65.
T.
Helgaker
,
J.
Gauss
,
P.
Jørgensen
, and
J.
Olsen
,
J. Chem. Phys.
106
,
6430
(
1997
).

Supplementary Material

You do not currently have access to this content.