Rugged energy landscapes find wide applications in diverse fields ranging from astrophysics to protein folding. We study the dependence of diffusion coefficient (D) of a Brownian particle on the distribution width (ɛ) of randomness in a Gaussian random landscape by simulations and theoretical analysis. We first show that the elegant expression of Zwanzig [Proc. Natl. Acad. Sci. U.S.A.85, 2029 (1988)] for D(ɛ) can be reproduced exactly by using the Rosenfeld diffusion-entropy scaling relation. Our simulations show that Zwanzig's expression overestimates D in an uncorrelated Gaussian random lattice – differing by almost an order of magnitude at moderately high ruggedness. The disparity originates from the presence of “three-site traps” (TST) on the landscape – which are formed by the presence of deep minima flanked by high barriers on either side. Using mean first passage time formalism, we derive a general expression for the effective diffusion coefficient in the presence of TST, that quantitatively reproduces the simulation results and which reduces to Zwanzig's form only in the limit of infinite spatial correlation. We construct a continuous Gaussian field with inherent correlation to establish the effect of spatial correlation on random walk. The presence of TSTs at large ruggedness (ɛ ≫ kBT) gives rise to an apparent breakdown of ergodicity of the type often encountered in glassy liquids.

1.
B.
Bagchi
,
Molecular Relaxation in Liquids
(
Oxford University Press
,
USA
,
2012
).
2.
S.
Lifson
and
J. L.
Jackson
,
J. Chem. Phys.
36
,
2410
(
1962
).
3.
E. W.
Montroll
and
G. H.
Weiss
,
J. Math. Phys.
6
,
167
(
1965
).
4.
G. H.
Weiss
,
Advances in Chemical Physics
(
John Wiley & Sons, Inc.
,
2007
), pp.
1
18
.
5.
R.
Zwanzig
,
Proc. Natl. Acad. Sci. U.S.A.
85
,
2029
(
1988
).
6.
H.
Frauenfelder
,
S. G.
Sligar
, and
P. G.
Wolynes
,
Science
254
,
1598
(
1991
).
9.
M. D.
Ediger
,
C. A.
Angell
, and
S. R.
Nagel
,
J. Phys. Chem.
100
,
13200
(
1996
).
10.
Y.
Kafri
,
D. K.
Lubensky
, and
D. R.
Nelson
,
Biophys. J.
86
,
3373
(
2004
).
11.
P. C.
Blainey
,
G.
Luo
,
S. C.
Kou
,
W. F.
Mangel
,
G. L.
Verdine
,
B.
Bagchi
, and
X. S.
Xie
,
Nat. Struct. Mol. Biol.
16
,
1224
(
2009
).
12.
J.-H.
Jeon
,
V.
Tejedor
,
S.
Burov
,
E.
Barkai
,
C.
Selhuber-Unkel
,
K.
Berg-Sørensen
,
L.
Oddershede
, and
R.
Metzler
,
Phys. Rev. Lett.
106
,
048103
(
2011
).
13.
I.
Golding
and
E. C.
Cox
,
Phys. Rev. Lett.
96
,
098102
(
2006
).
14.
15.
J. D.
Bryngelson
and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U.S.A.
84
,
7524
(
1987
).
16.
J. D.
Bryngelson
and
P. G.
Wolynes
,
J. Phys. Chem.
93
,
6902
(
1989
).
17.
K. A.
Dill
,
S. B.
Ozkan
,
M. S.
Shell
, and
T. R.
Weikl
,
Annu. Rev. Biophys.
37
,
289
(
2008
).
18.
B. P.
English
,
W.
Min
,
A. M.
van Oijen
,
K. T.
Lee
,
G.
Luo
,
H.
Sun
,
B. J.
Cherayil
,
S. C.
Kou
, and
X. S.
Xie
,
Nat. Chem. Biol.
2
,
87
(
2006
).
19.
W.
Min
,
B. P.
English
,
G.
Luo
,
B. J.
Cherayil
,
S. C.
Kou
, and
X. S.
Xie
,
Acc. Chem. Res.
38
,
923
(
2005
).
20.
H.
Scher
and
M.
Lax
,
Phys. Rev. B
7
,
4491
(
1973
).
21.
B. A.
Shoemaker
,
J.
Wang
, and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U.S.A.
94
,
777
(
1997
).
22.
S. S.
Plotkin
,
J.
Wang
, and
P. G.
Wolynes
,
J. Chem. Phys.
106
,
2932
(
1997
).
23.
J.
Wang
,
S. S.
Plotkin
, and
P. G.
Wolynes
,
J. Phys. I France
7
,
395
(
1997
).
24.
R.
Metzler
and
J.
Klafter
,
Phys. Rep.
339
,
1
(
2000
).
25.
J. W.
Haus
,
K. W.
Kehr
, and
J. W.
Lyklema
,
Phys. Rev. B
25
,
2905
(
1982
).
26.
J.
Bernasconi
,
H. U.
Beyeler
,
S.
Strässler
, and
S.
Alexander
,
Phys. Rev. Lett.
42
,
819
(
1979
).
27.
R. L.
Jack
and
P.
Sollich
,
J. Stat. Mech.: Theory Exp.
2009
,
P11011
.
28.
P.
Dupuis
,
K.
Spiliopoulos
, and
H.
Wang
, in
Proceedings of the 2011 Winter Simulation Conference (WSC)
(
IEEE
,
2011
), pp.
504
515
.
29.
P.
Dupuis
,
K.
Spiliopoulos
, and
H.
Wang
,
Multiscale Model. Simul.
10
,
1
(
2012
).
30.
D. L.
Stein
and
C. M.
Newman
,
Phys. Rev. E
51
,
5228
(
1995
).
31.
Y.
Rosenfeld
,
Chem. Phys. Lett.
48
,
467
(
1977
).
32.
Y.
Rosenfeld
,
Phys. Rev. A
15
,
2545
(
1977
).
33.
M.
Agarwal
and
C.
Chakravarty
,
Phys. Rev. E
79
,
030202
(
2009
).
34.
T.
Goel
,
C. N.
Patra
,
T.
Mukherjee
, and
C.
Chakravarty
,
J. Chem. Phys.
129
,
164904
(
2008
).
35.
G.
Adam
and
J. H.
Gibbs
,
J. Chem. Phys.
43
,
139
(
1965
).
36.
P. G.
Wolynes
,
J. Res. Natl. Inst. Stand. Technol.
102
,
187
(
1997
).
37.
Y.
Limoge
and
J. L.
Bocquet
,
Phys. Rev. Lett.
65
,
60
(
1990
).
38.
K.
Mussawisade
,
T.
Wichmann
, and
K. W.
Kehr
,
J. Phys.: Condens. Matter
9
,
1181
(
1997
).
39.
A.
Miller
and
E.
Abrahams
,
Phys. Rev.
120
,
745
(
1960
).
40.
K. P. N.
Murthy
and
K. W.
Kehr
,
Phys. Rev. A
40
,
2082
(
1989
).
41.
H.
Cordes
,
S. D.
Baranovskii
,
K.
Kohary
,
P.
Thomas
,
S.
Yamasaki
,
F.
Hensel
, and
J.-H.
Wendorff
,
Phys. Rev. B
63
,
094201
(
2001
).
42.
R. H.
Kraichnan
,
J. Fluid Mech.
77
,
753
(
1976
).
43.
S.
Olla
and
P.
Siri
,
Stochast. Process. Appl.
109
,
317
(
2004
).
44.
R.
Rhodes
,
Probab. Theory Relat. Fields
143
,
545
(
2009
).
45.
R.
Rhodes
,
Ann. Inst. Henri Poincarè Probab. Stat.
45
,
981
(
2009
).
46.
C.-K.
Peng
,
S. V.
Buldyrev
,
A. L.
Goldberger
,
S.
Havlin
,
F.
Sciortino
,
M.
Simons
, and
H. E.
Stanley
,
Nature (London)
356
,
168
(
1992
).
47.
S. V.
Buldyrev
,
A. L.
Goldberger
,
S.
Havlin
,
R. N.
Mantegna
,
M. E.
Matsa
,
C.-K.
Peng
,
M.
Simons
, and
H. E.
Stanley
,
Phys. Rev. E
51
,
5084
(
1995
).
48.
S. V.
Buldyrev
,
Power Laws, Scale-Free Networks and Genome Biology
,
Molecular Biology Intelligence Unit
, edited by
E. V.
Koonin
,
Y. I.
Wolf
, and
G. P.
Karev
(
Springer
,
2006
), pp.
123
164
.
49.
50.
C. M.
Newman
and
D. L.
Stein
,
Ann. l'inst. Henri Poincarè (B) Probab. Stat.
31
,
249
(
1995
), available online at http://www.numdam.org/item?id=AIHPB_1995__31_1_249_0.
51.
W.
Min
,
X. S.
Xie
, and
B.
Bagchi
,
J. Chem. Phys.
131
,
065104
(
2009
).
You do not currently have access to this content.