An applied tension force changes the equilibrium conformations of a polymer chain tethered to a planar substrate and thus affects the adsorption transition as well as the coil-globule and crystallization transitions. Conversely, solvent quality and surface attraction are reflected in equilibrium force-extension curves that can be measured in experiments. To investigate these effects theoretically, we study tethered chains under tension with Wang-Landau simulations of a bond-fluctuation lattice model. Applying our model to pulling experiments on biological molecules we obtain a good description of experimental data in the intermediate force range, where universal features dominate and finite size effects are small. For tethered chains in poor solvent, we observe the predicted two-phase coexistence at transitions from the globule to stretched conformations and also discover direct transitions from crystalline to stretched conformations. A phase portrait for finite chains constructed by evaluating the density of states for a broad range of solvent conditions and tensions shows how increasing tension leads to a disappearance of the globular phase. For chains in good solvents tethered to hard and attractive surfaces we find the predicted scaling with the chain length in the low-force regime and show that our results are well described by an analytical, independent-bond approximation for the bond-fluctuation model for the highest tensions. Finally, for a hard or slightly attractive surface the stretching of a tethered chain is a conformational change that does not correspond to a phase transition. However, when the surface attraction is sufficient to adsorb a chain it will undergo a desorption transition at a critical value of the applied force. Our results for force-induced desorption show the transition to be discontinuous with partially desorbed conformations in the coexistence region.

1.
F.
Ritort
,
J. Phys.: Condens. Matter
18
,
R531
(
2006
).
2.
S.
Kumar
and
M. S.
Li
,
Phys. Rep.
486
,
1
(
2010
).
3.
E.
Evans
and
K.
Ritchie
,
Biophys. J.
72
,
1541
(
1997
).
4.
C.
Ray
,
J. R.
Brown
, and
B. B.
Akhremitchev
,
J. Phys. Chem. B
111
,
1963
(
2007
).
5.
L.
Dougan
,
J.
Li
,
C. J.
Badilla
,
B. J.
Berne
, and
J. M.
Fernandez
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
12605
(
2009
).
6.
T.
Vrbová
and
S. G.
Whittington
,
J. Phys. A.: Math. Gen.
29
,
6253
(
1996
).
7.
R.
Rajesh
,
D.
Dhar
,
D.
Giri
,
S.
Kumar
, and
Y.
Singh
,
Phys. Rev. E
65
,
056124
(
2002
).
8.
J.
Krawczyk
,
A. L.
Owczarek
,
T.
Prellberg
, and
A.
Rechnitzer
,
Europhys. Lett.
70
,
726
(
2005
).
9.
M.
Bachmann
and
W.
Janke
,
Phys. Rev. E
73
,
041802
(
2006
).
10.
J.
Luettmer-Strathmann
,
F.
Rampf
,
W.
Paul
, and
K.
Binder
,
J. Chem. Phys.
128
,
064903
(
2008
).
11.
K.
Binder
,
W.
Paul
,
T.
Strauch
,
F.
Rampf
,
V.
Ivanov
, and
J.
Luettmer-Strathmann
,
J. Phys.: Condens. Matter
20
,
494215
(
2008
).
12.
M.
Möddel
,
W.
Janke
, and
M.
Bachmann
,
Macromolecules
44
,
9013
(
2011
).
13.
T. A.
Knotts
 IV
,
N.
Rathore
, and
J.
de Pablo
,
Biophys. J.
94
,
4473
(
2008
).
14.
H.
Heinz
,
B. L.
Farmer
,
R. B.
Pandey
,
J. M.
Slocik
,
S. S.
Patnaik
,
R.
Pachter
, and
R. R.
Naik
,
J. Am. Chem. Soc.
131
,
9704
(
2009
).
15.
A.
Swetnam
and
M. P.
Allen
,
Phys. Rev. E
85
,
062901
(
2012
).
16.
M.
Radhakrishna
,
S.
Sharma
, and
S. K.
Kumar
,
J. Chem. Phys.
136
,
114114
(
2012
).
17.
C.
Bustamante
,
J. F.
Marko
,
E. D.
Siggia
, and
S.
Smith
,
Science
265
,
1599
(
1994
).
18.
S. B.
Smith
,
Y.
Cui
, and
C.
Bustamante
,
Science
271
,
795
(
1996
).
19.
B. J.
Haupt
,
T. J.
Senden
, and
E. M.
Sevick
,
Langmuir
18
,
2174
(
2002
).
20.
M.-N.
Dessinges
,
B.
Maier
,
Y.
Zhang
,
M.
Peliti
,
D.
Bensimon
, and
V.
Croquette
,
Phys. Rev. Lett.
89
,
248102
(
2002
).
21.
S.
Cocco
,
J. F.
Marko
,
R.
Monasson
,
A.
Sarkar
, and
J.
Yan
,
Eur. Phys. J. E
10
,
249
(
2003
).
22.
C.
Danilowicz
,
C. H.
Lee
,
V. W.
Coljee
, and
M.
Prentiss
,
Phys. Rev. E
75
,
030902
(
2007
).
23.
N.
Gunari
,
A. C.
Balazs
, and
G. C.
Walker
,
J. Am. Chem. Soc.
129
,
10046
(
2007
).
24.
O. A.
Saleh
,
D. B.
McIntosh
,
P.
Pincus
, and
N.
Ribeck
,
Phys. Rev. Lett.
102
,
068301
(
2009
).
25.
I. T. S.
Li
and
G. C.
Walker
,
J. Am. Chem. Soc.
132
,
6530
(
2010
).
26.
A.
Dittmore
,
D. B.
McIntosh
,
S.
Halliday
, and
O. A.
Saleh
,
Phys. Rev. Lett.
107
,
148301
(
2011
).
27.
P.
Pincus
,
Macromolecules
9
,
386
(
1976
).
28.
A.
Halperin
and
E. B.
Zhulina
,
Europhys. Lett.
15
,
417
(
1991
).
29.
A.
Halperin
and
E. B.
Zhulina
,
Macromolecules
24
,
5393
(
1991
).
30.
J. F.
Marko
and
E. D.
Siggia
,
Macromolecules
28
,
8759
(
1995
).
31.
B.-Y.
Ha
and
D.
Thirumalai
,
J. Chem. Phys.
106
,
4243
(
1997
).
32.
C.
Bouchiat
,
M. D.
Wang
,
J.-F.
Allemand
,
T.
Strick
,
M.
Block
, and
V.
Croquette
,
Biophys. J.
76
,
409
(
1999
).
33.
L.
Livadaru
,
R. R.
Netz
, and
H. J.
Kreuzer
,
J. Chem. Phys.
118
,
1404
(
2003
).
34.
S.
Bhattacharya
,
V. G.
Rostiashvili
,
A.
Milchev
, and
T. A.
Vilgis
,
Macromolecules
42
,
2236
(
2009
).
35.
L. I.
Klushin
and
A. M.
Skvortsov
,
J. Phys. A: Math. Theor.
44
,
473001
(
2011
).
36.
A. M.
Skvortsov
,
L. I.
Klushin
,
A. A.
Polotsky
, and
K.
Binder
,
Phys. Rev. E
85
,
031803
(
2012
).
37.
M.
Wittkop
,
J.-U.
Sommer
,
S.
Kreitmeier
, and
D.
Göritz
,
Phys. Rev. E
49
,
5472
(
1994
).
38.
M.
Wittkop
,
S.
Kreitmeier
, and
D.
Göritz
,
Phys. Rev. E
53
,
838
(
1996
).
39.
P.
Grassberger
and
H.-P.
Hsu
,
Phys. Rev. E
65
,
031807
(
2002
).
40.
T.
Frisch
and
A.
Verga
,
Phys. Rev. E
65
,
041801
(
2002
).
41.
F.
Celestini
,
T.
Frisch
, and
X.
Oyharcabal
,
Phys. Rev. E
70
,
012801
(
2004
).
42.
G.
Morrison
,
C.
Hyeon
,
N. M.
Toan
,
B.-H.
Ha
, and
D.
Thirumalai
,
Macromolecules
40
,
7343
(
2007
).
43.
S.
Bhattacharya
,
V. G.
Rostiashvili
,
A.
Milchev
, and
T. A.
Vilgis
,
Phys. Rev. E
79
,
030802
(
2009
).
44.
N. M.
Toan
and
D.
Thirumalai
,
Macromolecules
43
,
4394
(
2010
).
45.
H.-P.
Hsu
and
K.
Binder
,
J. Chem. Phys.
136
,
024901
(
2012
).
46.
F.
Wang
and
D. P.
Landau
,
Phys. Rev. Lett.
86
,
2050
(
2001
).
47.
F.
Wang
and
D. P.
Landau
,
Phys. Rev. E
64
,
056101
(
2001
).
48.
W.
Paul
,
T.
Strauch
,
F.
Rampf
, and
K.
Binder
,
Phys. Rev. E
75
,
060801
(
2007
).
49.
T.
Wüst
,
Y. W.
Li
, and
D. P.
Landau
,
J. Stat. Phys.
144
,
638
(
2011
).
50.
M. P.
Taylor
,
W.
Paul
, and
K.
Binder
,
J. Chem. Phys.
131
,
114907
(
2009
).
51.
R.
Descas
,
J.-U.
Sommer
, and
A.
Blumen
,
Macromol. Theory Simul.
17
,
429
(
2008
).
52.
A. Y.
Grosberg
and
A. R.
Khokhlov
,
Statistical Physics of Macromolecules
,
AIP Series in Polymers and Complex Materials
(
American Institute of Physics
,
Woodbury, NY
,
1994
).
53.
P.
Cifra
and
T.
Bleha
,
Macromol. Theory Simul.
4
,
233
(
1995
).
54.
R.
Brak
,
P.
Dyke
,
J.
Lee
,
A. L.
Owczarek
,
T.
Prellberg
,
A.
Rechnitzer
, and
S. G.
Whittington
,
J. Phys. A
42
,
085001
(
2009
).
55.
E.
Eisenriegler
,
K.
Kremer
, and
K.
Binder
,
J. Chem. Phys.
77
,
6296
(
1982
).
56.
I.
Carmesin
and
K.
Kremer
,
Macromolecules
21
,
2819
(
1988
).
57.
K.
Binder
, ed.,
Monte Carlo and Molecular Dynamics Simulations in Polymer Science
(
Oxford University Press
,
Oxford
,
1995
).
58.
D. P.
Landau
and
K.
Binder
,
A Guide to Monte Carlo Simulations in Statistical Physics
(
Cambridge University
Press,
Cambridge, UK
,
2000
).
59.
See supplementary material at http://dx.doi.org/10.1063/1.4895729 for details on the scaling of the zero-force extension fluctuations and for figures illustrating the construction and validation of the density-of-states obtained by the algorithms described in the appendices.
60.
F.
Rampf
,
W.
Paul
, and
K.
Binder
,
Europhys. Lett.
70
,
628
(
2005
).
61.
A. M.
Ferrenberg
and
D. P.
Landau
,
Phys. Rev. B
44
,
5081
(
1991
).
62.
R.
Descas
,
J.-U.
Sommer
, and
A.
Blumen
,
J. Chem. Phys.
120
,
8831
(
2004
).
63.
D. P.
Landau
,
S.-H.
Tsai
, and
M.
Exler
,
Am. J. Phys.
72
,
1294
(
2004
).
64.
C.
Zhou
,
T. C.
Schulthess
,
S.
Torbrügge
, and
D. P.
Landau
,
Phys. Rev. Lett.
96
,
120201
(
2006
).
65.
M. S.
Causo
,
J. Stat. Phys.
108
,
247
(
2002
).

Supplementary Material

You do not currently have access to this content.