We develop a novel method of replica-exchange molecular dynamics (REMD) simulation, mass-scaling REMD (MSREMD) method, which improves numerical stability of simulations. In addition, the MSREMD method can also simplify a replica-exchange routine by eliminating velocity scaling. As a pilot system, a Lennard-Jones fluid is simulated with the new method. The results suggest that the MSREMD method improves the numerical stability at high temperatures compared with the conventional REMD method. For the Nosé-Hoover thermostats, we analytically demonstrate that the MSREMD simulations can reproduce completely the same trajectories of the conventional REMD ones with shorter time steps at high temperatures. Accordingly, we can easily compare the computational costs of the REMD and MSREMD simulations. We conclude that the MSREMD method decreases the instability and optimizes the computational resources with simpler algorithm.

1.
U. H. E.
Hansmann
, and
Y.
Okamoto
, “
The generalized-ensemble approach for protein folding simulations
,” in
Annual Reviews of Computational Physics VI
, edited by
D.
Stauffer
(
World Scientific
,
Singapore
,
1999
), pp.
129
157
.
2.
A.
Mitsutake
,
Y.
Sugita
, and
Y.
Okamoto
, “
Generalized-ensemble algorithms for molecular simulations of biopolymers
,”
Biopolymers
60
,
96
123
(
2001
).
3.
Y.
Sugita
, and
Y.
Okamoto
, “
Free-energy calculations in protein folding by generalized-ensemble algorithms
,” in
Lecture Notes in Computational Science and Engineering
, edited by
T.
Schlick
and
H. H.
Gan
(
Springer
,
2002
), pp.
304
332
.
4.
B. A.
Berg
and
T.
Neuhaus
, “
Multicanonical algorithms for first order phase transitions
,”
Phys. Lett. B
267
,
249
253
(
1991
).
5.
B. A.
Berg
and
T.
Neuhaus
, “
Multicanonical ensemble: A new approach to simulate first-order phase transitions
,”
Phys. Rev. Lett.
68
,
9
12
(
1992
).
6.
A. P.
Lyubartsev
,
A. A.
Martsinovski
,
S. V.
Shevkunov
, and
P. N.
Vorontsov-Velyaminov
, “
New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles
,”
J. Chem. Phys.
96
,
1776
(
1992
).
7.
E.
Marinari
and
G.
Parisi
, “
Simulated tempering: A new Monte Carlo scheme
,”
Europhys. Lett. (EPL)
19
,
451
458
(
1992
).
8.
K.
Hukushima
and
K.
Nemoto
, “
Exchange Monte Carlo method and application to spin glass simulations
,”
J. Phys. Soc. Jpn.
65
,
1604
1608
(
1996
).
9.
C. J.
Geyer
, in
Proceedings of the 23rd Symposium on the Interface, Computing Science and Statistics
, edited by
E. M.
Keramidas
(
Interface Foundation of North America
,
1991
), pp.
156
163
.
10.
F.
Wang
and
D. P.
Landau
, “
Efficient, multiple-range random walk algorithm to calculate the density of states
,”
Phys. Rev. Lett.
86
,
2050
2053
(
2001
).
11.
F.
Wang
and
D. P.
Landau
, “
Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram
,”
Phys. Rev. E
64
,
056101
(
2001
).
12.
A.
Laio
and
M.
Parrinello
, “
Escaping free-energy minima
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
12562
12566
(
2002
).
13.
R. H.
Swendsen
and
J.-S.
Wang
, “
Replica Monte Carlo simulation of spin-glasses
,”
Phys. Rev. Lett.
57
,
2607
2609
(
1986
).
14.
J.-S.
Wang
and
R. H.
Swendsen
, “
Replica Monte Carlo simulation (Revisited)
,”
Prog. Theor. Phys. Suppl.
157
,
317
323
(
2005
).
15.
Y.
Sugita
and
Y.
Okamoto
, “
Replica-exchange molecular dynamics method for protein folding
,”
Chem. Phys. Lett.
314
,
141
151
(
1999
).
16.
Y.
Sugita
,
A.
Kitao
, and
Y.
Okamoto
, “
Multidimensional replica-exchange method for free-energy calculations
,”
J. Chem. Phys.
113
,
6042
(
2000
).
17.
A.
Mitsutake
and
Y.
Okamoto
, “
From multidimensional replica-exchange method to multidimensional multicanonical algorithm and simulated tempering
,”
Phys. Rev. E
79
,
047701
(
2009
).
18.
A.
Mitsutake
and
Y.
Okamoto
, “
Multidimensional generalized-ensemble algorithms for complex systems
,”
J. Chem. Phys.
130
,
214105
(
2009
).
19.
A.
Mitsutake
, “
Simulated-tempering replica-exchange method for the multidimensional version
,”
J. Chem. Phys.
131
,
094105
(
2009
).
20.
T.
Nagai
and
Y.
Okamoto
, “
Simulated tempering and magnetizing: Application of two-dimensional simulated tempering to the two-dimensional Ising model and its crossover
,”
Phys. Rev. E
86
,
056705
(
2012
).
21.
T.
Nishikawa
,
H.
Ohtsuka
,
Y.
Sugita
,
M.
Mikami
, and
Y.
Okamoto
, “
Replica-exchange Monte Carlo Method for Ar fluid
,”
Prog. Theor. Phys. Suppl.
138
,
270
271
(
2000
).
22.
T.
Okabe
,
M.
Kawata
,
Y.
Okamoto
, and
M.
Mikami
, “
Replica-exchange Monte Carlo method for the isobaric-isothermal ensemble
,”
Chem. Phys. Lett.
335
,
435
439
(
2001
).
23.
D.
Paschek
and
A.
García
, “
Reversible temperature and pressure denaturation of a protein fragment: A replica exchange molecular dynamics simulation study
,”
Phys. Rev. Lett.
93
,
238105
(
2004
).
24.
C.
Tsallis
, “
Possible generalization of Boltzmann-Gibbs statistics
,”
J. Stat. Phys.
52
,
479
487
(
1988
).
25.
J.
Kim
and
J. E.
Straub
, “
Generalized simulated tempering for exploring strong phase transitons
,”
J. Chem. Phys.
133
,
154101
(
2010
).
26.
S. J.
Marrink
,
A. H.
de Vries
, and
A. E.
Mark
, “
Coarse grained model for semiquantitative lipid simulations
,”
J. Chem. Phys. B
108
,
750
760
(
2004
).
27.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
de Vries
, “
The MARTINI force field: Coarse grained model for biomolecular simulations
,”
J. Phys. Chem. B
111
,
7812
7824
(
2007
).
28.
T.
Nagai
and
Y.
Okamoto
, “
Replica-exchange molecular dynamics simulation of a lipid bilayer system with a coarse-grained model
,”
Mol. Simul.
38
,
437
441
(
2012
).
29.
T.
Nagai
,
R.
Ueoka
, and
Y.
Okamoto
, “
Phase behavior of a lipid bilayer system studied by a replica-exchange molecular dynamics simulation
,”
J. Phys. Soc. Jpn.
81
,
024002
(
2012
).
30.
W.
Han
,
C.-K.
Wan
,
F.
Jiang
, and
Y.-D.
Wu
, “
PACE force field for protein simulations. 1. Full parameterization of version 1 and verification
,”
J. Chem. Theory Comput.
6
,
3373
3389
(
2010
).
31.
C. H.
Bennett
, “
Mass tensor molecular dynamics
,”
J. Comput. Phys.
19
,
267
279
(
1975
).
32.
R.
Pomès
and
J.
McCammon
, “
Mass and step length optimization for the calculation of equilibrium properties by molecular dynamics simulation
,”
Chem. Phys. Lett.
166
,
425
428
(
1990
).
33.
K. A.
Feenstra
,
B.
Hess
, and
H. J. C.
Berendsen
, “
Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems
,”
J. Comput. Chem.
20
,
786
798
(
1999
).
34.
H.
Zheng
,
S.
Wang
, and
Y.
Zhang
, “
Increasing the time step with mass scaling in Born-Oppenheimer ab initio QM/MM molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2706
2711
(
2009
).
35.
E.
Tsuchida
, “
Ab initio mass tensor molecular dynamics
,”
J. Chem. Phys.
134
,
044112
(
2011
).
36.
B.
Mao
, “
Mass-weighted molecular dynamics simulation and conformational analysis of polypeptide
,”
Biophys. J.
60
,
611
622
(
1991
).
37.
B.
Mao
,
G. M.
Maggiora
, and
K. C.
Chou
, “
Mass-weighted molecular dynamics simulation of cyclic polypeptides
,”
Biopolymers
31
,
1077
1086
(
1991
).
38.
P. H.
Nguyen
, “
Replica exchange simulation method using temperature and solvent viscosity
,”
J. Chem. Phys.
132
,
144109
(
2010
).
39.
I.-C.
Lin
and
M. E.
Tuckerman
, “
Enhanced conformational sampling of peptides via reduced side-chain and solvent masses
,”
J. Phys. Chem. B
114
,
15935
15940
(
2010
).
40.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
41.
W.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
42.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
2001
).
43.
B. A.
Berg
,
Markov Chain Monte Carlo Simulations and Their Statistical Analysis
(
World Scientific
,
Singapore
,
2004
).
44.
Y.
Mori
and
Y.
Okamoto
, “
Replica-exchange molecular dynamics simulations for various constant temperature algorithms
,”
J. Phys. Soc. Jpn.
79
,
074001
(
2010
).
45.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
(
1953
).
46.
J. D.
Chodera
and
M. R.
Shirts
, “
Replica exchange and expanded ensemble simulations as gibbs sampling: Simple improvements for enhanced mixing
,”
J. Chem. Phys.
135
,
194110
(
2011
).
47.
H.
Suwa
and
S.
Todo
, “
Markov chain Monte Carlo method without detailed balance
,”
Phys. Rev. Lett.
105
,
120603
(
2010
).
48.
S. G.
Itoh
and
H.
Okumura
, “
Replica-permutation method with the Suwa-Todo algorithm beyond the replica-exchange method
,”
J. Chem. Theory Comput.
9
,
570
581
(
2013
).
49.
W.
Nadler
and
U.
Hansmann
, “
Optimizing replica exchange moves for molecular dynamics
,”
Phys. Rev. E
76
,
057102
(
2007
).
50.
H.
Berendsen
,
D.
van der Spoel
, and
R.
van Drunen
, “
GROMACS: A message-passing parallel molecular dynamics implementation
,”
Comput. Phys. Commun.
91
,
43
56
(
1995
).
51.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
, “
GROMACS 3.0: a package for molecular simulation and trajectory analysis
,”
J. Mol. Model.
7
,
306
317
(
2001
).
52.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
, “
GROMACS: fast, flexible, and free
,”
J. Comput. Chem.
26
,
1701
1718
(
2005
).
53.
S.
Pronk
,
S.
Páll
,
R.
Schulz
,
P.
Larsson
,
P.
Bjelkmar
,
R.
Apostolov
,
M. R.
Shirts
,
J. C.
Smith
,
P. M.
Kasson
,
D.
van der Spoel
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit
,”
Bioinformatics
29
,
845
854
(
2013
).
54.
M.
Allen
and
D.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford, New York
,
1989
).
55.
H. C.
Andersen
, “
Molecular dynamics simulations at constant pressure and/or temperature
,”
J. Chem. Phys.
72
,
2384
(
1980
).
56.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
, “
Explicit reversible integrators for extended systems dynamics
,”
Mol. Phys.
87
,
1117
1157
(
1996
).
57.
H.
Okumura
,
S. G.
Itoh
, and
Y.
Okamoto
, “
Explicit symplectic integrators of molecular dynamics algorithms for rigid-body molecules in the canonical, isobaric-isothermal, and related ensembles
,”
J. Chem. Phys.
126
,
084103
(
2007
).
58.
S. G.
Itoh
,
T.
Morishita
, and
H.
Okumura
, “
Decomposition-order effects of time integrator on ensemble averages for the Nosé-Hoover thermostat
,”
J. Chem. Phys.
139
,
064103
(
2013
).
59.
M.
Matsumoto
and
T.
Nishimura
, “
Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator
,”
ACM Trans. Comput. Biol. Bioinf.
8
,
3
30
(
1998
).
60.
H.
Okumura
and
F.
Yonezawa
, “
Liquid-vapor coexistence curves of several interatomic model potentials
,”
J. Chem. Phys.
113
,
9162
(
2000
).
61.
B.
Efron
,
The Jackknife, the Bootstrap, and Other Resampling Plans
(
Society for Industrial and Applied Mathmatics [SIAM]
,
Philadelphia
,
1982
).
62.
H.
Flyvbjerg
and
H. G.
Petersen
, “
Error estimates on averages of correlated data
,”
J. Chem. Phys.
91
,
461
466
(
1989
).
63.
H.
Kokubo
and
Y.
Okamoto
, “
Analysis of helix-helix interactions of bacteriorhodopsin by replica-exchange simulations
,”
Biophys. J.
96
,
765
776
(
2009
).
You do not currently have access to this content.