Quantifying the interactions in dense colloidal fluids requires a properly designed order parameter. We present a modified bond-orientational order parameter,

$\bar{\psi }_{6}$
ψ¯6⁠, to avoid problems of the original definition of bond-orientational order parameter. The original bond-orientational order parameter can change discontinuously in time but our modified order parameter is free from the discontinuity and, thus, it is a suitable measure to quantify the dynamics of the bond-orientational ordering of the local surroundings. Here we analyze
$\bar{\psi }_{6}$
ψ¯6
in a dense driven monodisperse quasi-two-dimensional colloidal fluids where a single particle is optically trapped at the center. The perturbation by the trapped and driven particle alters the structure and dynamics of the neighboring particles. This perturbation disturbs the flow and causes spatial and temporal distortion of the bond-orientational configuration surrounding each particle. We investigate spatio-temporal behavior of
$\bar{\psi }_{6}$
ψ¯6
by a Wavelet transform that provides a time-frequency representation of the time series of
$\bar{\psi }_{6}$
ψ¯6
. It is found that particles that have high power in frequencies corresponding to the inverse of the timescale of perturbation undergo distortions of their packing configurations that result in cage breaking and formation dynamics. To gain insight into the dynamic structure of cage breaking and formation of bond-orientational ordering, we compare the cage breaking and formation dynamics with the underlying dynamical structure identified by Lagrangian Coherent Structures (LCSs) estimated from the finite-time Lyapunov exponent (FTLE) field. The LCSs are moving separatrices that effectively divide the flow into distinct regions with different dynamical behavior. It is shown that the spatial distribution of the FTLE field and the power of particles in the wavelet transform have positive correlation, implying that LCSs provide a dynamic structure that dominates the dynamics of cage breaking and formation of the colloidal fluids.

1.
W. K.
Kegel
and
A.
van Blaaderen
,
Science
287
,
290
(
2000
).
2.
B.
Cui
,
B.
Lin
, and
S. A.
Rice
,
J. Chem. Phys.
114
,
9142
(
2001
).
3.
O.
Pouliquen
,
M.
Belzons
, and
M.
Nicolas
,
Phys. Rev. Lett.
91
,
014301
(
2003
).
4.
O.
Dauchot
,
G.
Marty
, and
G.
Biroli
,
Phys. Rev. Lett.
95
,
265701
(
2005
).
5.
M. D.
Ediger
,
Annu. Rev. Phys. Chem.
51
,
99
(
2000
).
6.
L.
Berthier
,
Physics
4
,
42
(
2011
).
7.
8.
G.
Marty
and
O.
Dauchot
,
Phys. Rev. Lett.
94
,
015701
(
2005
).
9.
C.
Donati
,
J. F.
Douglas
,
W.
Kob
,
S. J.
Plimpton
,
P. H.
Poole
, and
S. C.
Glotzer
,
Phys. Rev. Lett.
80
,
2338
(
1998
).
10.
C.
Donati
,
S. C.
Glotzer
,
P. H.
Poole
,
W.
Kob
, and
S. J.
Plimpton
,
Phys. Rev. E
60
,
3107
(
1999
).
11.
N.
Lačević
,
F. W.
Starr
,
T. B.
Schrøder
, and
S. C.
Glotzer
,
J. Chem. Phys.
119
,
7372
(
2003
).
12.
A. R.
Abate
and
D. J.
Durian
,
Phys. Rev. E
76
,
021306
(
2007
).
13.
M. E.
Cates
,
J. P.
Wittmer
,
J.-P.
Bouchaud
, and
P.
Claudin
,
Phys. Rev. Lett.
81
,
1841
(
1998
).
14.
M. L.
Falk
and
J. S.
Langer
,
Phys. Rev. E
57
,
7192
(
1998
).
15.
A. R.
Abate
and
D. J.
Durian
,
Phys. Rev. E
74
,
031308
(
2006
).
16.
A. S.
Keys
,
A. R.
Abate
,
S. C.
Glotzer
, and
D. J.
Durian
,
Nat. Phys.
3
,
260
(
2007
).
17.
F.
Lechenault
,
O.
Dauchot
,
G.
Biroli
, and
J. P.
Bouchaud
,
EPL (Europhys. Lett.)
83
,
46003
(
2008
).
18.
K. A.
Lorincz
and
P.
Schall
,
Soft Matter
6
,
3044
(
2010
).
19.
R.
Candelier
and
O.
Dauchot
,
Phys. Rev. Lett.
103
,
128001
(
2009
).
20.
R.
Candelier
and
O.
Dauchot
,
Phys. Rev. E
81
,
011304
(
2010
).
21.
Y.
Takehara
,
S.
Fujimoto
, and
K.
Okumura
,
EPL (Europhys. Lett.)
92
,
44003
(
2010
).
22.
P.
Habdas
and
E. R.
Weeks
,
Curr. Opin. Colloid Interface Sci.
7
,
196
(
2002
).
23.
P.
Habdas
,
D.
Schaar
,
A. C.
Levitt
, and
E. R.
Weeks
,
EPL (Europhys. Lett.)
67
,
477
(
2004
).
24.
L. G.
Wilson
,
A. W.
Harrison
,
A. B.
Schofield
,
J.
Arlt
, and
W. C. K.
Poon
,
J. Phys. Chem. B
113
,
3806
(
2009
).
25.
I.
Sriram
,
A.
Meyer
, and
E. M.
Furst
,
Phys. Fluids
22
,
062003
(
2010
).
26.
J.
Pesic
,
J. Z.
Terdik
,
X.
Xu
,
Y.
Tian
,
A.
Lopez
,
S. A.
Rice
,
A. R.
Dinner
, and
N. F.
Scherer
,
Phys. Rev. E
86
,
031403
(
2012
).
27.
E.
Kolb
,
J.
Cviklinski
,
J.
Lanuza
,
P.
Claudin
, and
E.
Clément
,
Phys. Rev. E
69
,
031306
(
2004
).
28.
D. R.
Nelson
and
B. I.
Halperin
,
Phys. Rev. B
19
,
2457
(
1979
).
29.
D. R.
Nelson
and
B. I.
Halperin
,
Phys. Rev. B
21
,
5312
(
1980
).
30.
A.
Jaster
,
Phys. Rev. E
59
,
2594
(
1999
).
31.
P. M.
Reis
,
R. A.
Ingale
, and
M. D.
Shattuck
,
Phys. Rev. Lett.
96
,
258001
(
2006
).
32.
C. R.
Berardi
,
K.
Barros
,
J. F.
Douglas
, and
W.
Losert
,
Phys. Rev. E
81
,
041301
(
2010
).
33.
K.
Watanabe
and
H.
Tanaka
,
Phys. Rev. Lett.
100
,
158002
(
2008
).
34.
G.
Haller
and
G.
Yuan
,
Physica D
147
,
352
(
2000
).
35.
G.
Haller
,
Physica D
149
,
248
(
2001
).
36.
S. C.
Shadden
,
M.
Astorino
, and
J.-F.
Gerbeau
,
Chaos
20
,
017512
(
2010
).
37.
S.
Raben
,
S.
Ross
, and
P.
Vlachos
,
Exp. Fluids
55
,
1638
(
2013
).
38.
J. S.
Olafsen
and
J. S.
Urbach
,
Phys. Rev. Lett.
95
,
098002
(
2005
).
39.
B.
Aldridge
,
G.
Haller
,
P.
Sorger
, and
D.
Lauffenburger
,
IEE Proc.: Syst. Biol.
153
,
425
(
2006
).
40.
M.
Astorino
,
J.
Hamers
,
S. C.
Shadden
, and
J.-F.
Gerbeau
,
Int. J. Numer. Meth. Biomed. Eng.
28
,
937
(
2012
).
41.
J.
Peng
and
J. O.
Dabiri
,
J. Fluid Mech.
623
,
75
(
2009
).
42.
T.
Peacock
and
J.
Dabiri
,
Chaos
20
,
017501
(
2010
).
43.
S. C.
Shadden
,
F.
Lekien
, and
J. E.
Marsden
,
Physica D
212
,
271
(
2005
).
44.
G.
Haller
and
T.
Sapsis
,
Chaos
21
,
023115
(
2011
).
45.
Recently,
G.
Haller
[
Physica D
240
,
574
(
2011
)] has defined LCSs rigorously in terms of hyperbolic material surfaces with extreme finite time repulsion and extraction, to avoid spurious identification of LCSs that appear due to shear or stretching.
46.
See supplementary material at http://dx.doi.org/10.1063/1.4894866 for the time evolution of
$\bar{\psi }_{6}$
ψ¯6
(Video 1), the power of particles (Video 2), and the FTLE field with the superposition of the power of particles (Video 3). All movies are created for a few hundred frames. In addition, Figs. 1 and 2 are shown for the maximal stretching directions along the FTLE ridges, and the time averaged spatial correlation of
$\bar{\psi }_{6}(t)$
ψ¯6(t)
, respectively.
47.
P. S.
Addison
,
The Illustrated Wavelet Transform Handbook
(
Institute of Physics Publishing
,
2002
).
48.
D.
Gabor
,
J. Inst. Electr. Eng. - Part III: Radio Commun. Eng.
93
,
429
(
1946
).
49.
The Fourier transform of the Gabor wavelet is given by
$\Phi (f)=\frac{\nu }{f_{b}} \exp [-\pi (\frac{ \nu (f-f_{b})}{f_{b}} )^{2}]$
Φ(f)=νfbexp[π(ν(ffb)fb)2]
that is a Gaussian form of frequency f with mean fb and the standard deviation
$\sigma _{f_b}=\frac{1}{\sqrt{2\pi }}\frac{f_{b}}{\nu }$
σfb=12πfbν
. Here
$\sigma _{f_b}$
σfb
provides the amount uncertainty to the identification of fb in the frequency plane. As ν is smaller (larger), the uncertainty becomes larger (smaller) in frequency (while the uncertainty in time (scale) becomes smaller (larger) in the wavelet transform). In our analysis, the time scale of perturbation is about 14 frames. In our study, we set two conditions to decide the value of ν: to have time resolution at least 14 frames which can be captured by choosing ν ⩽ 1, and to distinguish the base frequency fb to the other frequency components. In this sense, The value of ν less than 1 will increase the uncertainty in frequency which makes it difficult to differentiate the b.
50.
J. R.
Melrose
and
R. C.
Ball
,
J. Rheol.
48
,
961
(
2004
).
51.
X.
Cheng
,
J. H.
McCoy
,
J. N.
Israelachvili
, and
I.
Cohen
,
Science
333
,
1276
(
2011
).

Supplementary Material

You do not currently have access to this content.