The application of a new reaction scheme using CH2I + O2 to generate the simplest Criegee intermediate, CH2OO, has stimulated lively research; the Criegee intermediates are extremely important in atmospheric chemistry. The detailed mechanism of CH2I + O2 is hence important in understanding kinetics involving CH2OO. We employed ultraviolet absorption to probe simultaneously CH2I2, CH2OO, CH2I, and IO in the reaction system of CH2I + O2 upon photolysis at 248 nm of a flowing mixture of CH2I2, O2, and N2 (or SF6) in the pressure range 7.6–779 Torr to investigate the reaction kinetics. With a detailed mechanism to model the observed temporal profiles of CH2I, CH2OO, and IO, we found that various channels of the reaction CH2I + O2 and CH2OO + I play important roles; an additional decomposition channel of CH2I + O2 to form products other than CH2OO or ICH2OO becomes important at pressure less than 60 Torr. The pressure dependence of the derived rate coefficients of various channels of reactions of CH2I + O2 and CH2OO + I has been determined. We derived a rate coefficient also for the self-reaction of CH2OO as k = (8 ± 4) × 10−11 cm3 molecule−1 s−1 at 295 K. The yield of CH2OO from CH2I + O2 was found to have a pressure dependence on N2 and O2 smaller than in previous reports; for air under 1 atm, the yield of ∼30% is about twice of previous estimates.

1.
D.
Johnson
and
G.
Marston
,
Chem. Soc. Rev.
37
,
699
(
2008
).
2.
J. G.
Calvert
,
R.
Atkinson
,
J. A.
Kerr
,
S.
Madronich
,
G. K.
Moortgat
,
T. J.
Wallington
, and
G.
Yarwood
,
The Mechanisms of Atmospheric Oxidation of the Alkenes
(
Oxford University Press
,
Oxford, UK
,
2000
), pp.
172
335
.
3.
O.
Horie
and
G. K.
Moortgat
,
Acc. Chem. Res.
31
,
387
(
1998
).
4.
R.
Criegee
and
G.
Wenner
,
Justus Liebigs Ann. Chem.
564
,
9
(
1949
).
5.
W.
Sander
,
Angew. Chem. Int. Ed. Engl.
29
,
344
(
1990
).
6.
W. H.
Bunnelle
,
Chem. Rev.
91
,
335
(
1991
).
7.
S.
Hatakeyama
and
H.
Akimoto
,
Res. Chem. Intermed.
20
,
503
(
1994
).
9.
P.
Neeb
,
O.
Horie
, and
G. K.
Moortgat
,
J. Phys. Chem. A
102
,
6778
(
1998
).
10.
C. A.
Taatjes
,
D. E.
Shallcross
, and
C. J.
Percival
,
Phys. Chem. Chem. Phys.
16
,
1704
(
2014
).
11.
C. A.
Taatjes
,
G.
Meloni
,
T. M.
Selby
,
A. J.
Trevitt
,
D. L.
Osborn
,
C. J.
Percival
, and
D. E.
Shallcross
,
J. Am. Chem. Soc.
130
,
11883
(
2008
).
12.
O.
Welz
,
J. D.
Savee
,
D. L.
Osborn
,
S. S.
Vasu
,
C. J.
Percival
,
D. E.
Shallcross
, and
C. A.
Taatjes
,
Science
335
,
204
(
2012
).
13.
J. M.
Beames
,
F.
Liu
,
L.
Lu
, and
M. I.
Lester
,
J. Am. Chem. Soc.
134
,
20045
(
2012
).
14.
L.
Sheps
,
J. Phys. Chem. Lett.
4
,
4201
(
2013
).
15.
W.-L.
Ting
,
Y.-H.
Chen
,
W.
Chao
,
M. C.
Smith
, and
J. J.
Lin
,
Phys. Chem. Chem. Phys.
16
,
10438
(
2014
).
16.
Y.-T.
Su
,
Y.-H.
Huang
,
H. A.
Witek
, and
Y.-P.
Lee
,
Science
340
,
174
(
2013
).
17.
M.
Nakajima
and
Y.
Endo
,
J. Chem. Phys.
139
,
101103
(
2013
).
18.
M. C.
McCarthy
,
L.
Cheng
,
K. N.
Crabtree
,
O.
Martinez
,
T. L.
Nguyen
,
C. C.
Womack
, and
J. F.
Stanton
,
J. Phys. Chem. Lett.
4
,
4133
(
2013
).
19.
C. A.
Taatjes
,
O.
Welz
,
A. J.
Eskola
,
J. D.
Savee
,
D. L.
Osborn
,
E. P. F.
Lee
,
J. M.
Dyke
,
D. W. K.
Mok
,
D. E.
Shallcross
, and
C. J.
Percival
,
Phys. Chem. Chem. Phys.
14
,
10391
(
2012
).
20.
D.
Stone
,
M.
Blitz
,
L.
Daubney
,
N. U. M.
Howes
, and
P.
Seakins
,
Phys. Chem. Chem. Phys.
16
,
1139
(
2014
).
21.
Y.-T.
Su
,
H.-Y.
Lin
,
R.
Putikam
,
H.
Matsui
,
M. C.
Lin
, and
Y.-P.
Lee
,
Nat. Chem.
6
,
477
(
2014
).
22.
Y.
Liu
,
K. D.
Bayes
, and
S. P.
Sander
,
J. Phys. Chem. A
118
,
741
(
2014
).
23.
J.
Sehested
,
T.
Ellermann
, and
O. J.
Nielsen
,
Int. J. Chem. Kinet.
26
,
259
(
1994
).
24.
A.
Masaki
,
S.
Tsunashima
, and
N.
Washida
,
J. Phys. Chem.
99
,
13126
(
1995
).
25.
S.
Enami
,
J.
Ueda
,
M.
Goto
,
Y.
Nakano
,
S.
Aloisio
,
S.
Hashimoto
, and
M.
Kawasaki
,
J. Phys. Chem. A
108
,
6347
(
2004
).
26.
S.
Enami
,
Y.
Sakamoto
,
T.
Yamanaka
,
S.
Hashimoto
,
M.
Kawasaki
,
K.
Tonokura
, and
H.
Tachikawa
,
Bull. Chem. Soc. Jpn.
81
,
1250
(
2008
).
27.
T.
Gravestock
,
M.
Blitz
,
W.
Bloss
, and
D. E.
Heard
,
ChemPhysChem
11
,
3928
(
2010
).
28.
V. G.
Stefanopoulos
,
V. C.
Papadimitriou
,
Y. G.
Lazarou
, and
P.
Papagiannakopoulos
,
J. Phys. Chem. A
112
,
1526
(
2008
).
29.
A. J.
Eskola
,
D.
Wojcik-Pastuszka
,
E.
Ratajczak
, and
R. S.
Timonen
,
Phys. Chem. Chem. Phys.
8
,
1416
(
2006
).
30.
H.
Huang
,
A.
Eskola
, and
C. A.
Taatjes
,
J. Phys. Chem. Lett.
3
,
3399
(
2012
);
H.
Huang
,
A.
Eskola
, and
C. A.
Taatjes
,
J. Phys. Chem. Lett.
4
,
3824
(
2013
).
31.
D.
Stone
,
M.
Blitz
,
L.
Daubney
,
T.
Ingham
, and
P.
Seakins
,
Phys. Chem. Chem. Phys.
15
,
19119
(
2013
).
32.
Z. J.
Buras
,
R. M. I.
Elasmra
, and
W. H.
Green
,
J. Phys. Chem. Lett.
5
,
2224
(
2014
).
33.
M.-N.
Su
and
J. J.
Lin
,
Rev. Sci. Instrum.
84
,
086106
(
2013
).
34.
M.-N.
Su
and
J. J.
Lin
,
GSTF J. Chem. Sci. (JChem)
1
,
52
(
2013
).
35.
S. P.
Sander
,
J.
Abbatt
,
J. R.
Barker
,
J. B.
Burkholder
,
R. R.
Friedl
,
D. M.
Golden
,
R. E.
Huie
,
C. E.
Kolb
,
M. J.
Kurylo
,
G. K.
Moortgat
,
V. L.
Orkin
, and
P. H.
Wine
, “
Chemical kinetics and photochemical data for use in atmospheric studies
,” Evaluation Number 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena,
2011
, see http://jpldataeval.jpl.nasa.gov.
36.
E. P. F.
Lee
,
D. K. W.
Kok
,
D. E.
Shallcross
,
C. J.
Percival
,
D. L.
Osborn
,
C. A.
Taayjes
, and
J. M.
Dyke
,
Chem. Eur. J.
18
,
12411
(
2012
).
37.
See supplementary material at http://dx.doi.org/10.1063/1.4894405 for analysis of the transient absorption spectra, kinetic analysis, additional temporal profiles, a complete list of experimental conditions and fitted results, and sensitivity analysis.
38.
H. Y.
Chen
,
C.-Y.
Lien
,
W.-Y.
Lin
,
Y. T.
Lee
, and
J. J.
Lin
,
Science
324
,
781
(
2009
).
39.
Z. J.
Buras
,
R. M. I.
Elasamra
,
A.
Jalan
,
J. E.
Middaugh
, and
W. H.
Green
,
J. Phys. Chem. A
118
,
1997
(
2014
).
40.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
,
J. N.
Crowley
,
R. F.
Hampson
,
R. G.
Hynes
,
M. E.
Jenkin
,
M. J.
Rossi
, and
J.
Troe
,
Atmos. Chem. Phys.
7
,
981
(
2007
).
41.
R. J.
Kee
,
F. M.
Rupley
, and
J. A.
Miller
, Chemkin-II, “
A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics
,” Sandia Report, SAND89-8009B,
1995
.

Supplementary Material

You do not currently have access to this content.