We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear 1H-X (X = 13C, 15N, 31P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the 1H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the 1H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from 1H chemical shift anisotropy, while keeping the 1H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [15N]-N-acetyl-valine and [U-13C,15N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate 1H-15N dipolar couplings in the context of 3D experiments is presented on U-13C,15N-enriched dynein light chain protein LC8.

1.
J.
Meiler
,
J. J.
Prompers
,
W.
Peti
,
C.
Griesinger
, and
R.
Bruschweiler
,
J. Am. Chem. Soc.
123
(
25
),
6098
6107
(
2001
).
2.
D.
Huster
,
L. S.
Xiao
, and
M.
Hong
,
Biochemistry
40
(
25
),
7662
7674
(
2001
).
3.
R.
Tycko
,
Prog. Nucl. Magn. Reson. Spectrosc.
42
(
1–2
),
53
68
(
2003
).
4.
D. S.
Thiriot
,
A. A.
Nevzorov
,
L.
Zagyanskiy
,
C. H.
Wu
, and
S. J.
Opella
,
J. Mol. Biol.
341
(
3
),
869
879
(
2004
).
5.
W. T.
Franks
,
D. H.
Zhou
,
B. J.
Wylie
,
B. G.
Money
,
D. T.
Graesser
,
H. L.
Frericks
,
G.
Sahota
, and
C. M.
Rienstra
,
J. Am. Chem. Soc.
127
(
35
),
12291
12305
(
2005
).
6.
J. L.
Lorieau
and
A. E.
McDermott
,
J. Am. Chem. Soc.
128
(
35
),
11505
11512
(
2006
).
7.
A.
McDermott
and
T.
Polenova
,
Curr. Opin. Struct. Biol.
17
(
5
),
617
622
(
2007
).
8.
J. L.
Lorieau
,
L. A.
Day
, and
A. E.
McDermott
,
Proc. Natl. Acad. Sci. U.S.A.
105
(
30
),
10366
10371
(
2008
).
9.
M.
Sackewitz
,
H. A.
Scheidt
,
G.
Lodderstedt
,
A.
Schierhorn
,
E.
Schwarz
, and
D.
Huster
,
J. Am. Chem. Soc.
130
(
23
),
7172
(
2008
).
10.
V.
Chevelkov
,
U.
Fink
, and
B.
Reif
,
J. Am. Chem. Soc.
131
(
39
),
14018
14022
(
2009
).
11.
I. J. L.
Byeon
,
G. J.
Hou
,
Y.
Han
,
C. L.
Suiter
,
J.
Ahn
,
J.
Jung
,
C. H.
Byeon
,
A. M.
Gronenborn
, and
T.
Polenova
,
J. Am. Chem. Soc.
134
(
14
),
6455
6466
(
2012
).
12.
B. J.
van Rossum
,
C. P.
de Groot
,
V.
Ladizhansky
,
S.
Vega
, and
H. J. M.
de Groot
,
J. Am. Chem. Soc.
122
(
14
),
3465
3472
(
2000
).
13.
V.
Ladizhansky
and
S.
Vega
,
J. Chem. Phys.
112
(
16
),
7158
7168
(
2000
).
14.
M.
Hohwy
,
C. P.
Jaroniec
,
B.
Reif
,
C. M.
Rienstra
, and
R. G.
Griffin
,
J. Am. Chem. Soc.
122
(
13
),
3218
3219
(
2000
).
15.
X.
Zhao
,
M.
Eden
, and
M. H.
Levitt
,
Chem. Phys. Lett.
342
(
3–4
),
353
361
(
2001
).
16.
M.
Bjerring
and
N. C.
Nielsen
,
Chem. Phys. Lett.
370
(
3–4
),
496
503
(
2003
).
17.
M.
Eden
,
Chem. Phys. Lett.
378
(
1–2
),
55
64
(
2003
).
18.
I.
Schnell
,
Prog. Nucl. Magn. Reson. Spectrosc.
45
(
1–2
),
145
207
(
2004
).
19.
S. V.
Dvinskikh
,
H.
Zimmermann
,
A.
Maliniak
, and
D.
Sandstrom
,
J. Chem. Phys.
122
(
4
),
044512
(
2005
).
20.
F.
Chou
,
S.
Huang
, and
J. C. C.
Chan
,
J. Magn. Reson.
197
(
1
),
96
99
(
2009
).
21.
P.
Schanda
,
B. H.
Meier
, and
M.
Ernst
,
J. Am. Chem. Soc.
132
(
45
),
15957
15967
(
2010
).
22.
G. J.
Hou
,
I. J. L.
Byeon
,
J.
Ahn
,
A. M.
Gronenborn
, and
T.
Polenova
,
J. Am. Chem. Soc.
133
(
46
),
18646
18655
(
2011
).
23.
P.
Schanda
,
B. H.
Meier
, and
M.
Ernst
,
J. Magn. Reson.
210
(
2
),
246
259
(
2011
).
24.
M. F.
Cobo
,
A.
Achilles
,
D.
Reichert
,
E. R.
deAzevedo
, and
K.
Saalwachter
,
J. Magn. Reson.
221
,
85
96
(
2012
).
25.
A.
Gansmuller
,
J. P.
Simorre
, and
S.
Hediger
,
J. Magn. Reson.
234
,
154
164
(
2013
).
26.
P.
Paluch
,
T.
Pawlak
,
J. P.
Amoureux
, and
M. J.
Potrzebowski
,
J. Magn. Reson.
233
,
56
63
(
2013
).
27.
M.
Carravetta
,
M.
Eden
,
X.
Zhao
,
A.
Brinkmann
, and
M. H.
Levitt
,
Chem. Phys. Lett.
321
(
3–4
),
205
215
(
2000
).
28.
A.
Brinkmann
and
M. H.
Levitt
,
J. Chem. Phys.
115
,
357
384
(
2001
).
29.
M. H.
Levitt
, in
Encyclopedia of Nuclear Magnetic Resonance
, edited by
D. M. H.
Grant
and
R. K.
Harris
(
Wiley
,
Chichester
,
2002
), Vol.
9
, pp.
165
196
.
30.
R. K.
Hester
,
J. L.
Ackerman
,
B. L.
Neff
, and
J. S.
Waugh
,
Phys. Rev. Lett.
36
(
18
),
1081
1083
(
1976
).
31.
M. G.
Munowitz
,
R. G.
Griffin
,
G.
Bodenhausen
, and
T. H.
Huang
,
J. Am. Chem. Soc.
103
(
10
),
2529
2533
(
1981
).
32.
M. E.
Stoll
,
A. J.
Vega
, and
R. W.
Vaughan
,
J. Chem. Phys.
65
(
10
),
4093
4098
(
1976
).
33.
G. J.
Hou
,
S.
Paramasivam
,
S.
Yan
,
T.
Polenova
, and
A. J.
Vega
,
J. Am. Chem. Soc.
135
(
4
),
1358
1368
(
2013
).
34.
G. J.
Hou
,
R.
Gupta
,
T.
Polenova
, and
A. J.
Vega
,
Isr. J. Chem.
54
(
1–2
),
171
183
(
2014
).
35.
S. J.
Sun
,
A. H.
Butterworth
,
S.
Paramasivam
,
S.
Yan
,
C. M.
Lightcap
,
J. C.
Williams
, and
T.
Polenova
,
Can. J. Chem.
89
(
7
),
909
918
(
2011
).
36.
B. M.
Fung
,
A. K.
Khitrin
, and
K.
Ermolaev
,
J. Magn. Reson.
142
(
1
),
97
101
(
2000
).
37.
M.
Bak
,
J. T.
Rasmussen
, and
N. C.
Nielsen
,
J. Magn. Reson.
147
(
2
),
296
330
(
2000
).
38.
M.
Bak
and
N. C.
Nielsen
,
J. Magn. Reson.
125
(
1
),
132
139
(
1997
).
39.
G. J.
Hou
,
I. J. L.
Byeon
,
J.
Ahn
,
A. M.
Gronenborn
, and
T.
Polenova
,
J. Chem. Phys.
137
(
13
),
134201
(
2012
).
40.
M.
Baldus
,
A. T.
Petkova
,
J.
Herzfeld
, and
R. G.
Griffin
,
Mol. Phys.
95
(
6
),
1197
1207
(
1998
).
41.
N.
Tjandra
and
A.
Bax
,
J. Am. Chem. Soc.
119
(
34
),
8076
8082
(
1997
).
42.
M.
Tessari
,
F. A. A.
Mulder
,
R.
Boelens
, and
G. W.
Vuister
,
J. Magn. Reson.
127
(
1
),
128
133
(
1997
).
43.
G.
Cornilescu
and
A.
Bax
,
J. Am. Chem. Soc.
122
(
41
),
10143
10154
(
2000
).
44.
K.
Loth
,
P.
Pelupessy
, and
G.
Bodenhausen
,
J. Am. Chem. Soc.
127
(
16
),
6062
6068
(
2005
).
45.
K. E.
Kover
,
G.
Batta
, and
V. J.
Hruby
,
Magn. Reson. Chem.
41
(
10
),
828
836
(
2003
).
46.
L. S.
Yao
,
A.
Grishaev
,
G.
Cornilescu
, and
A.
Bax
,
J. Am. Chem. Soc.
132
(
31
),
10866
10875
(
2010
).
47.
J.
Yang
,
M. L.
Tasayco
, and
T.
Polenova
,
J. Am. Chem. Soc.
130
(
17
),
5798
5807
(
2008
).
48.
S.
Yan
, “
Microtubule-associated CAP-Gly domain of dynactin: structure, dynamics, conformational plasticity, and interactions with microtubules and microtubule plus-end tracking proteins by magic angle spinning NMR spectroscopy
,” Ph.D. dissertation (
University of Delaware
, Newark, DE,
2014
).
49.
See supplementary material at http://dx.doi.org/10.1063/1.4894226 for supplementary figures, tables, and discussion on the influence of RF mismatch on experimental parameters.

Supplementary Material

You do not currently have access to this content.