This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach generates spatially localized vibrational modes, in contrast to the delocalization exhibited by canonical normal modes. The method is rigorously tested across a series of chemical systems, ranging from small molecules to large water clusters and a protonated dipeptide. It is interfaced with exact, grid-based approaches, as well as vibrational self-consistent field methods. Most significantly, this new set of reference coordinates exhibits a well-behaved spatial decay of mode couplings, which allows for a systematic, a priori truncation of mode couplings and increased computational efficiency. Convergence can typically be reached by including modes within only about 4 Å. The local nature of this truncation suggests particular promise for the ab initio simulation of anharmonic vibrational motion in large systems, where connection to experimental spectra is currently most challenging.

1.
E. B.
Wilson
, Jr.
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra
(
Dover Publications
,
1980
).
2.
K. P.
Huber
and
G.
Herzberg
,
Constants of Diatomic Molecules, Molecular Structure and Molecular Spectra
(
Van Nostrand Reinhold
,
Princeton
,
1979
), Vol.
4
.
3.
Frontiers of Molecular Spectroscopy
, 1st ed., edited by
J.
Laanne
(
Elsevier
,
2008
).
4.
J. M.
Headrick
,
E. G.
Diken
,
R. S.
Walters
,
N. I.
Hammer
,
R. A.
Christie
,
J.
Cui
,
E. M.
Myshakin
,
M. A.
Duncan
,
M. A.
Johnson
, and
K. D.
Jordan
, “
Spectral signatures of hydrated proton vibrations in water clusters
,”
Science
308
,
1765
1769
(
2005
).
5.
J. R.
Roscioli
,
E. G.
Diken
,
M. A.
Johnson
,
S.
Horvath
, and
A. B.
McCoy
, “
Prying apart a water molecule with anionic H-bonding: A comparative spectroscopic study of the
$\rm X^-\cdot H_2O$
X·H2O
(X = OH, O, F, Cl, and Br) binary complexes in the 600–800
$\rm cm^{-1}$
cm 1
region
,”
J. Phys. Chem. A
110
,
4943
4952
(
2006
).
6.
R. A.
Relph
,
T. L.
Guasco
,
B. M.
Elliott
,
M. Z.
Kamrath
,
A. B.
McCoy
,
R. P.
Steele
,
D. P.
Schofield
,
K. D.
Jordan
,
A. A.
Viggiano
,
E. E.
Ferguson
, and
M. A.
Johnson
, “
How the shape of an H-bonded network controls proton-coupled water activation in HONO formation
,”
Science
327
,
308
312
(
2010
).
7.
N.
Heine
,
T. I.
Yacovitch
,
F.
Schubert
,
C.
Brieger
,
D. M.
Neumark
, and
K. R.
Asmis
, “
Infrared photodissociation spectroscopy of microhydrated nitrate-nitric acid clusters
$\rm NO_3^-(HNO_3)_m(H_2O)_n$
NO 3( HNO 3)m(H2O)n
,”
J. Phys. Chem. A
118
,
7613
(
2014
).
8.
G. N.
Patwari
and
J. M.
Lisy
, “
Mimicking the solvation of aqueous
$\rm Na^+$
Na +
in the gas phase
,”
J. Chem. Phys.
118
,
8555
8558
(
2003
).
9.
C.
Leavitt
,
A.
Wolk
,
M.
Kamrath
,
E.
Garand
,
M.
Van Stipdonk
, and
M.
Johnson
, “
Characterizing the intramolecular H-bond and secondary structure in methylated GlyGlyH+ with
$\rm H_2$
H2
predissociation spectroscopy
,”
J. Am. Soc. Mass Spectrom.
22
,
1941
1952
(
2011
).
10.
E. M.
Myshakin
,
K. D.
Jordan
,
E. L.
Sibert
, and
M. A.
Johnson
, “
Large anharmonic effects in the infrared spectra of the symmetrical
${\rm CH_3NO_2^{-}\cdot (H_2O)}$
CH 3 NO 2·(H2O)
and
${\rm CH_3CO_2^{-}\cdot (H_2O)}$
CH 3 CO 2·(H2O)
complexes
,”
J. Chem. Phys.
119
,
10138
(
2003
).
11.
J.
Oomens
,
A. R.
Moehlig
, and
T. H.
Morton
, “
Infrared multiple photon dissociation (IRMPD) spectroscopy of the proton-bound dimer of 1-methylcytosine in the gas phase
,”
J. Phys. Chem. Lett.
1
,
2891
(
2010
).
12.
B.
Yang
,
R. R.
Wu
,
G.
Berden
,
J.
Oomens
, and
M. T.
Rodgers
, “
Infrared multiple photon dissociation action spectroscopy of proton-bound dimers of cytosine and modified cytosines: Effects of modifications on gas-phase conformations
,”
J. Phys. Chem. B
117
,
14191
(
2013
).
13.
W. H.
Robertson
and
M. A.
Johnson
, “
Molecular aspects of halide ion hydration: The cluster approach
,”
Annu. Rev. Phys. Chem.
54
,
173
213
(
2003
).
14.
S.
Horvath
,
A. B.
McCoy
,
B. M.
Elliott
,
G. H.
Weddle
,
J. R.
Roscioli
, and
M. A.
Johnson
, “
Anharmonicities and isotopic effects in the vibrational spectra of
$\rm X^-\cdot H_2O$
X·H2O
,
$\rm \cdot HDO$
· HDO
, and
$\rm \cdot D_2O$
·D2O
[X = Cl, Br, and I] binary complexes
,”
J. Phys. Chem. A
114
,
1556
1568
(
2010
).
15.
E. G.
Diken
,
J. M.
Headrick
,
J. R.
Roscioli
,
J. C.
Bopp
,
M. A.
Johnson
,
A. B.
McCoy
,
X.
Huang
,
S.
Carter
, and
J. M.
Bowman
, “
Argon predissociation spectroscopy of the
$\rm OH^-\cdot H_2O$
OH ·H2O
and
$\rm Cl^-\cdot H_2O$
Cl ·H2O
complexes in the 1000–900
$\rm cm^{-1}$
cm 1
region: Intramolecular bending transitions and the search for the shared-proton fundamental in the hydroxide monohydrate
,”
J. Phys. Chem. A
109
,
571
575
(
2005
).
16.
E. A.
Price
,
N. I.
Hammer
, and
M. A.
Johnson
, “
A cluster study of
$\rm Cl_2^-$
Cl 2
microhydration: Size-dependent competition between symmetrical H-bonding to the anion and the formation of cyclic water networks in the
$\rm Cl_2^-\cdot 1\text{--}5(H_2O)$
Cl 2·15(H2O)
series
,”
J. Phys. Chem. A
108
,
3910
3915
(
2004
).
17.
E. G.
Diken
,
J.-W.
Shin
,
E. A.
Price
, and
M. A.
Johnson
, “
Isotopic fractionation and zero-point effects in anionic H-bonded complexes: a comparison of the
$\rm I^-\cdot HDO$
I· HDO
and
$\rm F^-\cdot HDO$
F· HDO
ion-molecule clusters
,”
Chem. Phys. Lett.
387
,
17
22
(
2004
).
18.
W. H.
Robertson
,
G. H.
Weddle
, and
M. A.
Johnson
, “
Strong similarities in the local hydration environments of the bromide ion and the
$\rm Cl^-\cdot CCl_3\cdot$
Cl · CCl 3·
ion-radical complex: Factors contributing to intramolecular distortions in the primary hydration shell
,”
J. Phys. Chem. A
107
,
9312
9318
(
2003
).
19.
W. H.
Robertson
,
G. H.
Weddle
,
J. A.
Kelley
, and
M. A.
Johnson
, “
Solvation of the
$\rm Cl^-\cdot H_2O$
Cl ·H2O
complex in
$\rm CCl_4$
CCl 4
clusters: The effect of solvent-mediated charge redistribution on the ionic H-bond
,”
J. Phys. Chem. A
106
,
1205
1209
(
2002
).
20.
W. H.
Robertson
,
K.
Karapetian
,
P.
Ayotte
,
K. D.
Jordan
, and
M. A.
Johnson
, “
Infrared predissociation spectroscopy of
$\rm I^-\cdot (CH_3OH)_n$
I·( CH 3 OH )n
, n = 1, 2: Cooperativity in asymmetric solvation
,”
J. Chem. Phys.
116
,
4853
4857
(
2002
).
21.
W. H.
Robertson
,
J. A.
Kelley
, and
M. A.
Johnson
, “
Double-contact ion-molecule binding: Infrared characterization of the ionic H bonds to formic acid in the
$\rm I^-\cdot HCOOH$
I· HCOOH
complex
,”
J. Chem. Phys.
113
,
7879
7884
(
2000
).
22.
P.
Ayotte
,
J. A.
Kelley
,
S. B.
Nielsen
, and
M. A.
Johnson
, “
Vibrational spectroscopy of the
$\rm F^-\cdot H_2O$
F·H2O
complex via argon predissociation: photoinduced, intracluster proton transfer
Chem. Phys. Lett.
316
,
455
459
(
2000
).
23.
P.
Ayotte
,
G. H.
Weddle
,
J.
Kim
, and
M. A.
Johnson
, “
Mass-selected ‘matrix isolation' infrared spectroscopy of the
$\rm I^-\cdot (H_2O)_2$
I·(H2O)2
complex: making and breaking the inter-water hydrogen-bond
,”
Chem. Phys.
239
,
485
491
(
1998
).
24.
J. R.
Roscioli
,
L. R.
McCunn
, and
M. A.
Johnson
, “
Quantum structure of the intermolecular proton bond
,”
Science
316
,
249
254
(
2007
).
25.
T. I.
Yacovitch
,
N.
Heine
,
C.
Brieger
,
T.
Wende
,
C.
Hock
,
D. M.
Neumark
, and
K. R.
Asmis
, “
Vibrational spectroscopy of bisulfate/sulfuric acid/water clusters: Structure, stability, and infrared multiple-photon dissociation intensities
,”
J. Phys. Chem. A
117
,
7081
7090
(
2013
).
26.
K. R.
Asmis
and
D. M.
Neumark
, “
Vibrational spectroscopy of microhydrated conjugate base anions
,”
Acc. Chem. Res.
45
,
43
52
(
2012
).
27.
D. M.
Neumark
, “
Probing chemical dynamics with negative ions
,”
J. Chem. Phys.
125
,
132303
(
2006
).
28.
J. H.
Hendricks
,
H. L.
de Clercq
,
C. B.
Freidhoff
,
S. T.
Arnold
,
J. G.
Eaton
,
C.
Fancher
,
S. A.
Lyapustina
,
J. T.
Snodgrass
, and
K. H.
Bowen
, “
Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters,
$\rm NO^-(Y)_n$
NO (Y)n
, where Y=Ar, Kr, Xe,
$\rm N_2O$
N2O
,
$\rm H_2S$
H2S
,
$\rm NH_3$
NH 3
,
$\rm H_2O$
H2O
, and
$\rm C_2H_4(OH)_2$
C2H4( OH )2
,”
J. Chem. Phys.
116
,
7926
7938
(
2002
).
29.
A. P.
Scott
and
L.
Radom
, “
Harmonic vibrational frequencies: An evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors
,”
J. Phys. Chem.
100
,
16502
16513
(
1996
).
30.
P.
Jensen
and
P. R.
Bunker
,
Computational Molecular Spectroscopy
(
John Wiley & Sons Ltd.
,
2000
).
31.
R.
Whitehead
and
N.
Handy
, “
Variational calculation of vibration-rotation energy levels for triatomic molecules
,”
J. Mol. Spectrosc.
55
,
356
373
(
1975
).
32.
J. C.
Light
and
T.
Carrington
, “
Discrete-variable representations and their utilization
,” in
Advances in Chemical Physics
(
John Wiley and Sons, Inc.
,
2007
), pp.
263
310
.
33.
D. T.
Colbert
and
W. H.
Miller
, “
A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method
,”
J. Chem. Phys.
96
,
1982
1991
(
1992
).
34.
J. M.
Bowman
,
T.
Carrington
, and
H.-D.
Meyer
, “
Variational quantum approaches for computing vibrational energies of polyatomic molecules
,”
Mol. Phys.
106
,
2145
2182
(
2008
).
35.
A.
Adel
and
D. M.
Dennison
, “
The infrared spectrum of carbon dioxide. Part I
,”
Phys. Rev.
43
,
716
723
(
1933
).
36.
E. B.
Wilson
and
J. B.
Howard
, “
The vibration-rotation energy levels of polyatomic molecules I. Mathematical theory of semirigid asymmetrical top molecules
,”
J. Chem. Phys.
4
,
260
268
(
1936
).
37.
H. H.
Nielsen
, “
The vibration-rotation energies of molecules
,”
Rev. Mod. Phys.
23
,
90
136
(
1951
).
38.
V.
Barone
, “
Anharmonic vibrational properties by a fully automated second-order perturbative approach
,”
J. Chem. Phys.
122
,
014108
(
2005
).
39.
J.
Neugebauer
and
B. A.
Hess
, “
Fundamental vibrational frequencies of small polyatomic molecules from density-functional calculations and vibrational perturbation theory
,”
J. Chem. Phys.
118
,
7215
7225
(
2003
).
40.
A. B.
McCoy
, “
Curious properties of the Morse oscillator
,”
Chem. Phys. Lett.
501
,
603
607
(
2011
).
41.
E. L.
Sibert
, “
Theoretical studies of vibrationally excited polyatomic molecules using canonical Van Vleck perturbation theory
,”
J. Chem. Phys.
88
,
4378
4390
(
1988
).
42.
A. B.
McCoy
and
E. L.
Sibert
, “
Calculation of infrared intensities of highly excited vibrational states of HCN using Van Vleck perturbation theory
,”
J. Chem. Phys.
95
,
3488
3493
(
1991
).
43.
J. M.
Bowman
, “
Self-consistent field energies and wavefunctions for coupled oscillators
,”
J. Chem. Phys.
68
,
608
610
(
1978
).
44.
J. M.
Bowman
, “
The self-consistent-field approach to polyatomic vibrations
,”
Acc. Chem. Res.
19
,
202
(
1986
).
45.
M.
Cohen
,
S.
Greita
, and
R.
McEarchran
, “
Approximate and exact quantum mechanical energies and eigenfunctions for a system of coupled oscillators
,”
Chem. Phys. Lett.
60
,
445
450
(
1979
).
46.
R.
Gerber
and
M.
Ratner
, “
A semiclassical self-consistent field (SC SCF) approximation for eigenvalues of coupled-vibration systems
,”
Chem. Phys. Lett.
68
,
195
198
(
1979
).
47.
T. K.
Roy
and
R. B.
Gerber
, “
Vibrational self-consistent field calculations for spectroscopy of biological molecules: new algorithmic developments and applications
,”
Phys. Chem. Chem. Phys.
15
,
9468
(
2013
).
48.
G. D.
Carney
,
L. L.
Sprandel
, and
C. W.
Kern
, “
Variational approaches to vibration-rotation spectroscopy for polyatomic molecules
,” in
Advances in Chemical Physics
(
John Wiley and Sons, Inc.
,
2007
), pp.
305
379
.
49.
R. B.
Gerber
, and
J. O.
Jung
, “
The vibrational self-consistent field approach and extensions: Method and applications to spectroscopy of large molecules and clusters
,” in
Computational Molecular Spectroscopy
, edited by
P.
Jensen
and
P. R.
Bunker
(
John Wiley & Sons Ltd.
,
Chichester
,
2000
).
50.
M.
Keçeli
and
S.
Hirata
, “
Size-extensive vibrational self-consistent field method
,”
J. Chem. Phys.
135
,
134108
(
2011
).
51.
J. O.
Jung
and
R. B.
Gerber
, “
Vibrational wave functions and spectroscopy of
$\rm ( H_2O )_n$
(H2O)n
, n = 2, 3, 4, 5: Vibrational self-consistent field with correlation corrections
,”
J. Chem. Phys.
105
,
10332
(
1996
).
52.
L. S.
Norris
,
M. A.
Ratner
,
A. E.
Roitberg
, and
R. B.
Gerber
, “
Møller-Plesset perturbation theory applied to vibrational problems
,”
J. Chem. Phys.
105
,
11261
(
1996
).
53.
I.
Respondek
and
D. M.
Benoit
, “
Fast degenerate correlation-corrected vibrational self-consistent field calculations of the vibrational spectrum of 4-mercaptopyridine
,”
J. Chem. Phys.
131
,
054109
(
2009
).
54.
N.
Matsunaga
,
G. M.
Chaban
, and
R. B.
Gerber
, “
Degenerate perturbation theory corrections for the vibrational self-consistent field approximation: Method and applications
,”
J. Chem. Phys.
117
,
3541
(
2002
).
55.
L.
Pele
and
R. B.
Gerber
, “
On the number of significant mode-mode anharmonic couplings in vibrational calculations: Correlation-corrected vibrational self-consistent field treatment of di-, tri-, and tetrapeptides
,”
J. Chem. Phys.
128
,
165105
(
2008
).
56.
K.
Yagi
,
S.
Hirata
, and
K.
Hirao
, “
Vibrational quasi-degenerate perturbation theory: Applications to Fermi resonance in CO2, H2CO, and C6H6
,”
Phys. Chem. Chem. Phys.
10
,
1781
(
2008
).
57.
J. M.
Bowman
,
K.
Christoffel
, and
F.
Tobin
, “
Application of SCF-SI theory to vibrational motion in polyatomic molecules
,”
J. Phys. Chem.
83
,
905
912
(
1979
).
58.
M. A.
Ratner
,
V.
Buch
, and
R.
Gerber
, “
The semiclassical self-consistent-field (SC-SCF) approach to energy levels of coupled vibrational modes. II. The semiclassical state-interaction procedure
,”
Chem. Phys.
53
,
345
356
(
1980
).
59.
T. C.
Thompson
and
D. G.
Truhlar
, “
SCF CI calculations for vibrational eigenvalues and wavefunctions of systems exhibiting Fermi resonance
,”
Chem. Phys. Lett.
75
,
87
90
(
1980
).
60.
M.
Neff
and
G.
Rauhut
, “
Toward large scale vibrational configuration interaction calculations
,”
J. Chem. Phys.
131
,
124129
(
2009
).
61.
Y.
Scribano
and
D. M.
Benoit
, “
Iterative active-space selection for vibrational configuration interaction calculations using a reduced-coupling VSCF basis
,”
Chem. Phys. Lett.
458
,
384
(
2008
).
62.
O.
Christiansen
, “
Vibrational coupled cluster theory
,”
J. Chem. Phys.
120
,
2149
(
2004
).
63.
M.
Thomas
,
M.
Brehm
,
R.
Fligg
,
P.
Vohringer
, and
B.
Kirchner
, “
Computing vibrational spectra from ab initio molecular dynamics
,”
Phys. Chem. Chem. Phys.
15
,
6608
6622
(
2013
).
64.
M.
Pagliai
,
C.
Cavazzoni
,
G.
Cardini
,
G.
Erbacci
,
M.
Parrinello
, and
V.
Schettino
, “
Anharmonic infrared and Raman spectra in Car-Parrinello molecular dynamics simulations
,”
J. Chem. Phys.
128
,
224514
(
2008
).
65.
W. H.
Miller
, “
The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations
,”
J. Phys. Chem. A
105
,
2942
2955
(
2001
).
66.
M.
Ceotto
,
S.
Atahan
,
S.
Shim
,
G. F.
Tantardini
, and
A.
Aspuru-Guzik
, “
First-principles semiclassical initial value representation molecular dynamics
,”
Phys. Chem. Chem. Phys.
11
,
3861
3867
(
2009
).
67.
I.
Sumner
and
S. S.
Iyengar
, “
Quantum wavepacket ab initio molecular dynamics: An approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects
,”
J. Phys. Chem. A
111
,
10313
10324
(
2007
).
68.
H.-D.
Meyer
,
U.
Manthe
, and
L.
Cederbaum
, “
The multi-configurational time-dependent Hartree approach
,”
Chem. Phys. Lett.
165
,
73
78
(
1990
).
69.
M.
Beck
,
A.
Jäckle
,
G.
Worth
, and
H.-D.
Meyer
, “
The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets
,”
Phys. Rep.
324
,
1
105
(
2000
).
70.
H.-D.
Meyer
and
G. A.
Worth
, “
Quantum molecular dynamics: propagating wavepackets and density operators using the multiconfiguration time-dependent Hartree method
,”
Theor. Chem. Acc.
109
,
251
267
(
2003
).
71.
H.-D.
Meyer
,
F.
Gatti
, and
G. A.
Worth
,
Multidimensional Quantum Dynamics: MCTDH Theory and Applications
(
Wiley-VCH
,
2009
).
72.
M.
Ben-Nun
and
T. J.
Martinez
, “
A multiple spawning approach to tunneling dynamics
,”
J. Chem. Phys.
112
,
6113
6121
(
2000
).
73.
R.
Grimm
and
R.
Storer
, “
Monte-Carlo solution of Schrödinger's equation
,”
J. Comput. Phys.
7
,
134
156
(
1971
).
74.
J. B.
Anderson
, “
A random-walk simulation of the Schrödinger equation:
$\rm H^+_3$
H3+
,”
J. Chem. Phys.
63
,
1499
1503
(
1975
).
75.
A. B.
McCoy
,
C. E.
Hinkle
, and
A. S.
Petit
, “
Studying properties of floppy molecules using diffusion Monte Carlo
,” in
Advances in Quantum Monte Carlo
(
ACS Publications
,
2012
), Chap. 13, pp.
145
155
.
76.
G. M.
Chaban
,
J. O.
Jung
, and
R. B.
Gerber
, “
Ab initio calculation of anharmonic vibrational states of polyatomic systems: Electronic structure combined with vibrational self-consistent field
,”
J. Chem. Phys.
111
,
1823
1829
(
1999
).
77.
O.
Christiansen
, “
Selected new developments in vibrational structure theory: potential construction and vibrational wave function calculations
,”
Phys. Chem. Chem. Phys.
14
,
6672
(
2012
).
78.
K.
Yagi
,
K.
Hirao
,
T.
Taketsugu
,
M. W.
Schmidt
, and
M. S.
Gordon
, “
Ab initio vibrational state calculations with a quartic force field: Applications to H2CO, C2H4, CH3OH, CH3CCH, C6H6
,”
J. Chem. Phys.
121
,
1383
(
2004
).
79.
S.
Carter
,
S. J.
Culik
, and
J. M.
Bowman
, “
Vibrational self-consistent field method for many-mode systems: A new approach and application to the vibrations of CO adsorbed on Cu(100)
,”
J. Chem. Phys.
107
,
10458
(
1997
).
80.
G.
Li
,
S.-W.
Wang
,
C.
Rosenthal
, and
H.
Rabitz
, “
High dimensional model representations generated from low dimensional data samples. I. mp-Cut-HDMR
,”
J. Math. Chem.
30
,
1
30
(
2001
).
81.
C. A.
White
,
B. G.
Johnson
,
P. M.
Gill
, and
M.
Head-Gordon
, “
The continuous fast multipole method
,”
Chem. Phys. Lett.
230
,
8
16
(
1994
).
82.
E.
Schwegler
and
M.
Challacombe
, “
Linear scaling computation of the Hartree-Fock exchange matrix
,”
J. Chem. Phys.
105
,
2726
2734
(
1996
).
83.
M. C.
Strain
,
G. E.
Scuseria
, and
M. J.
Frisch
, “
Achieving linear scaling for the electronic quantum Coulomb problem
,”
Science
271
,
51
53
(
1996
).
84.
J. E.
Almlöf
, “
Methods for rapid evaluation of electron repulsion integrals in large-scale LCGO calculations
,”
Theor. Chem. Acc.
97
,
10
13
(
1997
).
85.
D. S.
Lambrecht
,
B.
Doser
, and
C.
Ochsenfeld
, “
Rigorous integral screening for electron correlation methods
,”
J. Chem. Phys.
123
,
184102
(
2005
).
86.
D. S.
Lambrecht
and
C.
Ochsenfeld
, “
Multipole-based integral estimates for the rigorous description of distance dependence in two-electron integrals
,”
J. Chem. Phys.
123
,
184101
(
2005
).
87.
D. M.
Benoit
, “
Fast vibrational self-consistent field calculations through a reduced mode-mode coupling scheme
,”
J. Chem. Phys.
120
,
562
(
2004
).
88.
G. M.
Chaban
,
J. O.
Jung
, and
B.
Gerber
, “
Anharmonic vibrational spectroscopy of glycine: Testing of ab initio and empirical potentials
,”
J. Phys. Chem. A
104
,
10035
(
2000
).
89.
J.
Lennard-Jones
and
J. A.
Pople
, “
The molecular orbital theory of chemical valency. IV. The significance of equivalent orbitals
,”
Proc. R. Soc. London, Ser. A
202
,
166
180
(
1950
).
90.
S. F.
Boys
, “
Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another
,”
Rev. Mod. Phys.
32
,
296
299
(
1960
).
91.
C.
Edmiston
and
K.
Ruedenberg
, “
Localized atomic and molecular orbitals
,”
Rev. Mod. Phys.
35
,
457
464
(
1963
).
92.
J.
Pipek
and
P. G.
Mezey
, “
A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions
,”
J. Chem. Phys.
90
,
4916
4926
(
1989
).
93.
J. E.
Subotnik
,
A. D.
Dutoi
, and
M.
Head-Gordon
, “
Fast localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates
,”
J. Chem. Phys.
123
,
114108
(
2005
).
94.
B.
Jansík
,
S.
Høst
,
K.
Kristensen
, and
P.
Jørgensen
, “
Local orbitals by minimizing powers of the orbital variance
,”
J. Chem. Phys.
134
,
194104
(
2011
).
95.
K.
Ruedenberg
, “
The physical nature of the chemical bond
,”
Rev. Mod. Phys.
34
,
326
376
(
1962
).
96.
A. J. W.
Thom
,
E. J.
Sundstrom
, and
M.
Head-Gordon
, “
LOBA: a localized orbital bonding analysis to calculate oxidation states, with application to a model water oxidation catalyst
,”
Phys. Chem. Chem. Phys.
11
,
11297
11304
(
2009
).
97.
J. E.
Subotnik
,
A.
Sodt
, and
M.
Head-Gordon
, “
Localized orbital theory and ammonia triborane
,”
Phys. Chem. Chem. Phys.
9
,
5522
5530
(
2007
).
98.
C. R.
Jacob
and
M.
Reiher
, “
Localizing normal modes in large molecules
,”
J. Chem. Phys.
130
,
084106
(
2009
).
99.
P.
Pulay
, “
Localizability of dynamic electron correlation
,”
Chem. Phys. Lett.
100
,
151
154
(
1983
).
100.
C.
Hampel
and
H.-J.
Werner
, “
Local treatment of electron correlation in coupled cluster theory
,”
J. Chem. Phys.
104
,
6286
6297
(
1996
).
101.
M.
Schütz
,
G.
Hetzer
, and
H.-J.
Werner
, “
Low-order scaling local electron correlation methods. I. Linear scaling local MP2
,”
J. Chem. Phys.
111
,
5691
5705
(
1999
).
102.
J. E.
Subotnik
,
A.
Sodt
, and
M.
Head-Gordon
, “
A near linear-scaling smooth local coupled cluster algorithm for electronic structure
,”
J. Chem. Phys.
125
,
074116
(
2006
).
103.
P.
Pulay
, “
Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules
,”
Mol. Phys.
17
,
197
204
(
1969
).
104.
P.
Pulay
and
G.
Fogarasi
, “
Geometry optimization in redundant internal coordinates
,”
J. Chem. Phys.
96
,
2856
2860
(
1992
).
105.
C. R.
Baiz
,
K. J.
Kubarych
,
E.
Geva
, and
E. L.
Sibert
, “
Local-mode approach to modeling multidimensional infrared spectra of metal carbonyls
,”
J. Phys. Chem. A
115
,
5354
5363
(
2011
).
106.
J. S.
Mancini
and
J. M.
Bowman
, “
On-the-fly ab initio calculations of anharmonic vibrational frequencies: Local-monomer theory and application to HCl clusters
,”
J. Chem. Phys.
139
,
164115
(
2013
).
107.
J.
Zúñiga
,
A.
Bastida
, and
A.
Requena
, “
Optimal generalized internal vibrational coordinates and potential energy surface for the ground electronic state of
$\rm SO_2$
SO 2
,”
J. Chem. Phys.
115
,
139
148
(
2001
).
108.
J. O.
Hirschfelder
, “
Coordinates which diagonalize the kinetic energy of relative motion
,”
Int. J. Quantum Chem.
3
,
17
31
(
1969
).
109.
F.
Gatti
and
C.
Iung
, “
Exact and constrained kinetic energy operators for polyatomic molecules: The polyspherical approach
,”
Phys. Rep.
484
,
1
69
(
2009
).
110.
M. J.
Bramley
and
N. C.
Handy
, “
Efficient calculation of rovibrational eigenstates of sequentially bonded four-atom molecules
,”
J. Chem. Phys.
98
,
1378
1397
(
1993
).
111.
C.
Evenhuis
,
G.
Nyman
, and
U.
Manthe
, “
Quantum dynamics of the CH3 fragment: A curvilinear coordinate system and kinetic energy operators
,”
J. Chem. Phys.
127
,
144302
(
2007
).
112.
B.
Podolsky
, “
Quantum-mechanically correct form of Hamiltonian function for conservative systems
,”
Phys. Rev.
32
,
812
816
(
1928
).
113.
L.
Schaad
and
J.
Hu
, “
The Schrödinger equation in generalized coordinates
,”
J. Mol. Struct.: THEOCHEM
185
,
203
215
(
1989
).
114.
D.
Strobusch
and
C.
Scheurer
, “
The hierarchical expansion of the kinetic energy operator in curvilinear coordinates extended to the vibrational configuration interaction method
,”
J. Chem. Phys.
135
,
144101
(
2011
).
115.
See supplementary material at http://dx.doi.org/10.1063/1.4894507 for Appendix A (Application of local modes to coupled anharmonic oscillators), Appendix B (figure of local modes of octatetraene, and table of ground state energy and all fundamental transition frequencies of octatetraene).
116.
K.
Yagi
,
M.
Keçeli
, and
S.
Hirata
, “
Optimized coordinates for anharmonic vibrational structure theories
,”
J. Chem. Phys.
137
,
204118
(
2012
).
117.
T. C.
Thompson
and
D. G.
Truhlar
, “
Optimization of vibrational coordinates, with an application to the water molecule
,”
J. Chem. Phys.
77
,
3031
3035
(
1982
).
118.
B.
Thomsen
,
K.
Yagi
, and
O.
Christiansen
, “
Optimized coordinates in vibrational coupled cluster calculations
,”
J. Chem. Phys.
140
,
154102
(
2014
).
119.
Y.
Shao
,
L.
Fusti-Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Oschsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O'Neill
,
R. A.
DiStasio
, Jr.
,
R. C.
Lochan
,
T.
Want
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T. V.
Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
 III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
 III
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
, “
Advances in methods and algorithms in a modern quantum chemistry program package
,”
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
120.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
121.
R. H.
Hertwig
and
W.
Koch
, “
On the parameterization of the local correlation functional: What is Becke-3-LYP?
Chem. Phys. Lett.
268
,
345
(
1997
).
122.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules
,”
J. Chem. Phys.
56
,
2257
2261
(
1972
).
123.
P. M.
Gill
,
B. G.
Johnson
, and
J. A.
Pople
, “
A standard grid for density functional calculations
,”
Chem. Phys. Lett.
209
,
506
512
(
1993
).
124.
J. E.
Subotnik
,
Y.
Shao
,
W.
Liang
, and
M.
Head-Gordon
, “
An efficient method for calculating maxima of homogeneous functions of orthogonal matrices: Applications to localized occupied orbitals
,”
J. Chem. Phys.
121
,
9220
9229
(
2004
).
125.
J. E.
Subotnik
,
R. J.
Cave
,
R. P.
Steele
, and
N.
Shenvi
, “
The initial and final states of electron and energy transfer processes: Diabatization as motivated by system-solvent interactions
,”
J. Chem. Phys.
130
,
234102
(
2009
).
126.
T.
Shimanouchi
,
Tables of Molecular Vibrational Frequencies Consolidated
(
National Bureau of Standards
,
1972
), Vol.
I
, pp.
1
160
.
127.
T.
Wassmann
,
A. P.
Seitsonen
,
A. M.
Saitta
,
M.
Lazzeri
, and
F.
Mauri
, “
Structure, stability, edge states, and aromaticity of graphene ribbons
,”
Phys. Rev. Lett.
101
,
096402
(
2008
).
128.
C. J.
Tainter
,
Y.
Ni
,
L.
Shi
, and
J. L.
Skinner
, “
Hydrogen bonding and OH-stretch spectroscopy in water: Hexamer (cage), liquid surface, liquid, and ice
,”
J. Phys. Chem. Lett.
4
,
12
17
(
2013
).
129.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
, “
General atomic and molecular electronic structure system
,”
J. Comput. Chem.
14
,
1347
1363
(
1993
).
130.
R. B.
Gerber
,
B.
Brauer
,
S. K.
Gregurick
, and
G. M.
Chaban
, “
Calculation of anharmonic vibrational spectroscopy of small biological molecules
,”
PhysChemComm
5
,
142
150
(
2002
).
131.
S. K.
Gregurick
,
G. M.
Chaban
, and
R. B.
Gerber
, “
Ab initio and improved empirical potentials for the calculation of the anharmonic vibrational states and intramolecular mode coupling of n-methylacetamide
,”
J. Phys. Chem. A
106
,
8696
(
2002
).
132.
S. K.
Gregurick
,
E.
Fredj
,
R.
Elber
, and
R. B.
Gerber
, “
Vibrational spectroscopy of peptides and peptide-water complexes: Anharmonic coupled-mode calculations
,”
J. Phys. Chem. B
101
,
8595
8606
(
1997
).
133.
A.
Roitberg
,
R.
Gerber
,
R.
Elber
, and
M.
Ratner
, “
Anharmonic wave functions of proteins: Quantum self-consistent field calculations of BPTI
,”
Science
268
,
1319
1322
(
1995
).
134.
G.
Meijer
,
G.
Berden
,
W.
Meerts
,
H. E.
Hunziker
,
M. S.
de Vries
, and
H.
Wendt
, “
Spectroscopy on triphenylamine and its van der Waals complexes
,”
Chem. Phys.
163
,
209
222
(
1992
).
135.
H.
Piest
,
G.
von Helden
, and
G.
Meijer
, “
Infrared spectroscopy of jet-cooled neutral and ionized aniline-Ar
,”
J. Chem. Phys.
110
,
2010
2015
(
1999
).
136.
M. G. H.
Boogaarts
,
G.
von Helden
, and
G.
Meijer
, “
A study on the structure and vibrations of diphenylamine by resonance-enhanced multiphoton ionization spectroscopy and ab initio calculations
,”
J. Chem. Phys.
105
,
8556
8568
(
1996
).
137.
L. I.
Grace
,
R.
Cohen
,
T.
Dunn
,
D. M.
Lubman
, and
M. S.
de Vries
, “
The R2PI spectroscopy of tyrosine: A vibronic analysis
,”
J. Mol. Spectrosc.
215
,
204
219
(
2002
).
138.
M. Z.
Kamrath
,
E.
Garand
,
P. A.
Jordan
,
C. M.
Leavitt
,
A. B.
Wolk
,
M. J.
Van Stipdonk
,
S. J.
Miller
, and
M. A.
Johnson
, “
Vibrational characterization of simple peptides using cryogenic infrared photodissociation of
$\rm H_2$
H2
-tagged, mass-selected ions
,”
J. Am. Chem. Soc.
133
,
6440
6448
(
2011
).
139.
C. J.
Johnson
,
A. B.
Wolk
,
J. A.
Fournier
,
E. N.
Sullivan
,
G. H.
Weddle
, and
M. A.
Johnson
, “
Communication: He-tagged vibrational spectra of the
$\rm SarGlyH^+$
SarGlyH +
and
$\rm H^+(H_2O)_{2,3}$
H+(H2O)2,3
ions: Quantifying tag effects in cryogenic ion vibrational predissociation (CIVP) spectroscopy
,”
J. Chem. Phys.
140
,
221101
(
2014
).
140.
A. B.
McCoy
,
T. L.
Guasco
,
C. M.
Leavitt
,
S. G.
Olesen
, and
M. A.
Johnson
, “
Vibrational manifestations of strong non-Condon effects in the
$\rm H_3O^+\cdot$
H3O+·
X3 (X = Ar, N2, CH4, H2O) complexes: A possible explanation for the intensity in the association band in the vibrational spectrum of water
,”
Phys. Chem. Chem. Phys.
14
,
7205
7214
(
2012
).

Supplementary Material

You do not currently have access to this content.