In solid state physics, electronic excitations are often classified as plasmons or single-particle excitations. The former class of states refers to collective oscillations of the electron density. The random-phase approximation allows for a quantum-theoretical treatment and a characterization on a microscopic level as a coherent superposition of a large number of particle-hole transitions with the same momentum transfer. However, small systems such as molecules or small nanoclusters lack the basic properties (momentum conservation and uniform exchange interaction) responsible for the formation of plasmons in the solid-state case. Despite an enhanced interest in plasmon-based technologies and an increasing number of studies regarding plasmons in molecules and small nanoclusters, their definition on a microscopic level of theory remains ambiguous. In this work, we analyze the microscopic properties of molecular plasmons in comparison with the homogeneous electron gas as a model system. Subsequently, the applicability of the derived characteristics is validated by analyzing the electronic excitation vectors with respect to orbital transitions for two linear polyenes within second order versions of the algebraic diagrammatic construction scheme for the polarization propagator.

1.
K. M.
Mayer
and
J. H.
Hafner
,
Chem. Rev.
111
,
3828
(
2011
).
2.
Y.
Li
,
C.
Jing
,
L.
Zhang
, and
Y.-T.
Long
,
Chem. Soc. Rev.
41
,
632
(
2012
).
3.
M.
Swierczewska
,
G.
Liu
,
S.
Lee
, and
X.
Chen
,
Chem. Soc. Rev.
41
,
2641
(
2012
).
4.
J. A.
Schuller
,
E. S.
Barnard
,
W.
Cai
,
Y. C.
Jun
,
J. S.
White
, and
M. L.
Brongersma
,
Nat. Mater.
9
,
193
(
2010
).
5.
H. A.
Atwater
and
A.
Polman
,
Nat. Mater.
9
,
205
(
2010
).
6.
H. J.
Lezec
,
J. A.
Dionne
, and
H. A.
Atwater
,
Science
316
,
430
(
2007
).
7.
T.
Ergin
,
N.
Stenger
,
P.
Brenner
,
J. B.
Pendry
, and
M.
Wegener
,
Science
328
,
337
(
2010
).
8.
A.
Boltasseva
and
H. A.
Atwater
,
Science
331
,
290
(
2011
).
9.
C. M.
Soukoulis
and
M.
Wegener
,
Nat. Photonics
5
,
523
(
2011
).
10.
W.
Cai
,
J. S.
White
, and
M. L.
Brongersma
,
Nano Lett.
9
,
4403
(
2009
).
11.
A.
Hryciw
,
Y. C.
Jun
, and
M. L.
Brongersma
,
Nat. Mater.
9
,
3
(
2010
).
12.
A. V.
Akimov
,
A.
Mukherjee
,
C. L.
Yu
,
D. E.
Chang
,
A. S.
Zibrov
,
P. R.
Hemmer
,
H.
Park
, and
M. D.
Lukin
,
Nature (London)
450
,
402
(
2007
).
13.
L.
Tang
,
S. E.
Kocabas
,
S.
Latif
,
A. K.
Okyay
,
D.-S.
Ly-Gagnon
,
K. C.
Saraswat
, and
D. A. B.
Miller
,
Nat. Photonics
2
,
226
(
2008
).
14.
S.
Linic
,
P.
Christopher
, and
D. B.
Ingram
,
Nat. Mater.
10
,
911
(
2011
).
15.
W.
Hou
,
W. H.
Hung
,
P.
Pavaskar
,
A.
Goeppert
,
M.
Aykol
, and
S. B.
Cronin
,
ACS Catal.
1
,
929
(
2011
).
16.
J.
Lee
,
S.
Mubeen
,
X.
Ji
,
G. D.
Stucky
, and
M.
Moskovits
,
Nano Lett.
12
,
5014
(
2012
).
17.
S.
Mukherjee
,
F.
Libisch
,
N.
Large
,
O.
Neumann
,
L. V.
Brown
,
J.
Cheng
,
J. B.
Lassiter
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
,
Nano Lett.
13
,
240
(
2013
).
18.
D.
Pines
and
D.
Bohm
,
Phys. Rev.
85
,
338
(
1952
).
20.
D.
Bohm
and
D.
Pines
,
Phys. Rev.
82
,
625
(
1951
).
21.
D.
Bohm
and
D.
Pines
,
Phys. Rev.
92
,
609
(
1953
).
22.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many-Particle Systems
(
Dover Publications
,
Mineola, New York
,
2003
).
23.
S. M.
Morton
,
D. W.
Silverstein
, and
L.
Jensen
,
Chem. Rev.
111
,
3962
(
2011
).
24.
C. M.
Aikens
,
S.
Li
, and
G. C.
Schatz
,
J. Phys. Chem. C
112
,
11272
(
2008
).
25.
H. E.
Johnson
and
C. M.
Aikens
,
J. Phys. Chem. A
113
,
4445
(
2009
).
26.
N.
Nayyar
,
V.
Turkowski
, and
T. S.
Rahman
,
Phys. Rev. Lett.
109
,
157404
(
2012
).
27.
G. F.
Bertsch
,
A.
Bulgac
,
D.
Tománek
, and
Y.
Wang
,
Phys. Rev. Lett.
67
,
2690
(
1991
).
28.
I. V.
Hertel
,
H.
Steger
,
J.
de Vries
,
B.
Weisser
,
C.
Menzel
,
B.
Kamke
, and
W.
Kamke
,
Phys. Rev. Lett.
68
,
784
(
1992
).
29.
G.
Gensterblum
,
J. J.
Pireaux
,
P. A.
Thiry
,
R.
Caudano
,
J. P.
Vigneron
,
P.
Lambin
,
A. A.
Lucas
, and
W.
Krätschmer
,
Phys. Rev. Lett.
67
,
2171
(
1991
).
30.
A.
Lucas
,
G.
Gensterblum
,
J. J.
Pireaux
,
P. A.
Thiry
,
R.
Caudano
,
J. P.
Vigneron
,
P.
Lambin
, and
W.
Krätschmer
,
Phys. Rev. B
45
,
13694
(
1992
).
31.
E.
Sohmen
,
J.
Fink
, and
W.
Krätschmer
,
Z. Phys. B
86
,
87
(
1992
).
32.
J. W.
Keller
and
M. A.
Coplan
,
Chem. Phys. Lett.
193
,
89
(
1992
).
33.
A.
Manjavacas
,
F.
Marchesin
,
S.
Thongrattanasiri
,
P.
Koval
,
P.
Nordlander
,
D.
Sánchez-Portal
, and
F. J.
García de Abajo
,
ACS Nano
7
,
3635
(
2013
).
34.
W. A.
de Heer
,
K.
Selby
,
V.
Kresin
,
J.
Masui
,
M.
Vollmer
,
A.
Châtelain
, and
W. D.
Knight
,
Phys. Rev. Lett.
59
,
1805
(
1987
).
35.
M.
Koskinen
,
M.
Manninen
, and
P.
Lipas
,
Z. Phys. D
31
,
125
(
1994
).
36.
J.-P.
Connerade
and
A. V.
Solov'yov
,
Phys. Rev. A
66
,
013207
(
2002
).
37.
J.
Yan
,
Z.
Yuan
, and
S.
Gao
,
Phys. Rev. Lett.
98
,
216602
(
2007
).
38.
J.
Yan
and
S.
Gao
,
Phys. Rev. B
78
,
235413
(
2008
).
39.
D.
Gambacurta
and
F.
Catara
,
J. Phys.: Conf. Ser.
168
,
012012
(
2009
).
40.
A. E.
DePrince
 III
,
M.
Pelton
,
J. R.
Guest
, and
S. K.
Gray
,
Phys. Rev. Lett.
107
,
196806
(
2011
).
41.
J. A.
Scholl
,
A. L.
Koh
, and
J. A.
Dionne
,
Nature (London)
483
,
421
(
2012
).
42.
B.
Gao
,
K.
Ruud
, and
Y.
Luo
,
J. Phys. Chem. C
118
,
13059
(
2014
).
43.
H.
Weiss
,
R.
Ahlrichs
, and
M.
Häser
,
J. Chem. Phys.
99
,
1262
(
1993
).
44.
C.
Yannouleas
,
E. N.
Bogachek
, and
U.
Landman
,
Phys. Rev. B
53
,
10225
(
1996
).
45.
R.
Bauernschmitt
,
R.
Ahlrichs
,
F. H.
Hennrich
, and
M. M.
Kappes
,
J. Am. Chem. Soc.
120
,
5052
(
1998
).
46.
R.-H.
Xie
,
G. W.
Bryant
,
G.
Sun
,
M. C.
Nicklaus
,
D.
Heringer
,
T.
Frauenheim
,
M. R.
Manaa
,
Vedene H.
Smith
 Jr.
,
Y.
Araki
, and
O.
Ito
,
J. Chem. Phys.
120
,
5133
(
2004
).
47.
T. L. J.
Toivonen
and
T. I.
Hukka
,
J. Phys. Chem. A
111
,
4821
(
2007
).
48.
A.
Schlachter
,
Rev. Mex. Fís. S
56
,
30
(
2010
).
49.
P.
Bolognesi
,
L.
Avaldi
,
A.
Ruocco
,
A.
Verkhovtsev
,
A.
Korol
, and
A.
Solov'yov
,
Eur. Phys. J. D
66
,
254
(
2012
).
50.
A.
Verkhovtsev
,
A.
Korol
, and
A.
Solov'yov
,
Eur. Phys. J. D
66
,
253
(
2012
).
51.
E. B.
Guidez
and
C. M.
Aikens
,
J. Phys. Chem. C
117
,
21466
(
2013
).
52.
E. B.
Guidez
and
C. M.
Aikens
,
Nanoscale
4
,
4190
(
2012
).
53.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
54.
F.
Furche
, and
D.
Rappoport
, in
Computational Photochemistry
,
Theoretical and Computational Chemistry
Vol.
16
, edited by
M.
Olivucci
(
Elsevier
,
Amsterdam
,
2005
), Chap. III.
55.
A.
Dreuw
and
M.
Head-Gordon
,
Chem. Rev.
105
,
4009
(
2005
).
56.
V.
Bonačić-Koutecký
,
P.
Fantucci
, and
J.
Koutecký
,
Chem. Rev.
91
,
1035
(
1991
).
57.
S.
Kümmel
and
M.
Brack
,
Phys. Rev. A
64
,
022506
(
2001
).
58.
S.
Kümmel
,
K.
Andrae
, and
P.-G.
Reinhard
,
Appl. Phys. B
73
,
293
(
2001
).
59.
S.
Bernadotte
,
F.
Evers
, and
C. R.
Jacob
,
J. Phys. Chem. C
117
,
1863
(
2013
).
60.
P.
Ring
and
P.
Schuck
,
The Nuclear Many-body Problem
(
Springer
,
New York
,
1980
).
61.
C.
Kittel
,
Introduction to Solid State Physics
(
John Wiley & Sons, Inc.
,
New York
,
2005
).
62.
See supplementary material at http://dx.doi.org/10.1063/1.4894266 for the discussion of further theoretical aspects as well as additional figures and coordinates of all minimum structures used in this work.
63.
J. E.
del Bene
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
55
,
2236
(
1971
).
64.
T.
Yasuike
,
K.
Nobusada
, and
M.
Hayashi
,
Phys. Rev. A
83
,
013201
(
2011
).
65.
G.-T.
Bae
and
C. M.
Aikens
,
J. Phys. Chem. C
116
,
10356
(
2012
).
66.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
67.
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
68.
J.
Schirmer
,
Phys. Rev. A
26
,
2395
(
1982
).
69.
J.
Schirmer
and
A. B.
Trofimov
,
J. Chem. Phys.
120
,
11449
(
2004
).
70.
A. B.
Trofimov
,
G.
Stelter
, and
J.
Schirmer
,
J. Chem. Phys.
111
,
9982
(
1999
).
71.
A. B.
Trofimov
and
J.
Schirmer
,
J. Phys. B
28
,
2299
(
1995
).
72.
A. B.
Trofimov
,
G.
Stelter
, and
J.
Schirmer
,
J. Chem. Phys.
117
,
6402
(
2002
).
73.
M.
Wormit
,
D. R.
Rehn
,
P. H.
Harbach
,
J.
Wenzel
,
C. M.
Krauter
,
E.
Epifanovsky
, and
A.
Dreuw
,
Mol. Phys.
112
,
774
(
2014
).
74.
J. H.
Starcke
,
M.
Wormit
,
J.
Schirmer
, and
A.
Dreuw
,
Chem. Phys.
329
,
39
(
2006
).
75.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
,
J. Chem. Phys.
121
,
9793
(
2004
).
76.
C. M.
Krauter
,
M.
Pernpointner
, and
A.
Dreuw
,
J. Chem. Phys.
138
,
044107
(
2013
).
77.
S.
Malola
,
L.
Lehtovaara
,
J.
Enkovaara
, and
H.
Häkkinen
,
ACS Nano
7
,
10263
(
2013
).
78.
See bwGRiD (http://www.bw-grid.de), member of the German D-Grid initiative, funded by the Ministry for Education and Research (Bundesministerium für Bildung und Forschung) and the Ministry for Science, Research and Arts Baden-Württemberg (Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg).

Supplementary Material

You do not currently have access to this content.