The transition voltage of vacuum-spaced and molecular junctions constructed with Ag and Pt electrodes is investigated by non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that, similarly to the case of Au-vacuum-Au previously studied, the transition voltages of Ag and Pt metal-vacuum-metal junctions with atomic protrusions on the electrode surface are determined by the local density of states of the p-type atomic orbitals of the protrusion. Since the energy position of the Pt 6p atomic orbitals is higher than that of the 5p/6p of Ag and Au, the transition voltage of Pt-vacuum-Pt junctions is larger than that of both Ag-vacuum-Ag and Au-vacuum-Au junctions. When one moves to analyzing asymmetric molecular junctions constructed with biphenyl thiol as central molecule, then the transition voltage is found to depend on the specific bonding site for the sulfur atom in the thiol group. In particular agreement with experiments, where the largest transition voltage is found for Ag and the smallest for Pt, is obtained when one assumes S binding at the hollow-bridge site on the Ag/Au(111) surface and at the adatom site on the Pt(111) one. This demonstrates the critical role played by the linker-electrode binding geometry in determining the transition voltage of devices made of conjugated thiol molecules.

1.
2.
H.
Song
,
M. A.
Reed
, and
T.
Lee
,
Adv. Mater.
23
,
1583
(
2011
).
3.
J. M.
Beebe
,
B.
Kim
,
J. W.
Gadzuk
, and
C. D.
Frisbie
,
J. G.
Kushmerick
,
Phys. Rev. Lett.
97
,
026801
(
2006
).
4.
J. M.
Beebe
,
B.
Kim
,
C. D.
Frisbie
, and
J. G.
Kushmerick
,
ACS Nano
2
,
827
(
2008
).
5.
K.
Liu
,
X.
Wang
, and
F.
Wang
,
ACS Nano
2
,
2315
(
2008
).
6.
A. V.
Pakoulev
and
V.
Burtman
,
J. Phys. Chem. C
113
,
21413
(
2009
).
7.
G.
Wang
,
T.-W.
Kim
,
G.
Jo
, and
T.
Lee
,
J. Am. Chem. Soc.
131
,
5980
(
2009
).
8.
H.
Song
,
Y.
Kim
,
Y. H.
Jang
,
H.
Jeong
,
M. A.
Reed
, and
T.
Lee
,
Nature (London)
462
,
1039
(
2009
).
9.
A.
Tan
,
S.
Sadat
, and
P.
Reddy
,
Appl. Phys. Lett.
96
,
013110
(
2010
).
10.
G.
Noy
,
A.
Ophir
, and
Y.
Selzer
,
Angew. Chem., Int. Ed.
49
,
5734
(
2010
).
11.
N.
Bennett
,
G.
Xu
,
L. J.
Esdaile
,
H. L.
Anderson
,
J. E.
Macdonald
, and
M.
Elliott
,
Small
6
,
2604
(
2010
).
12.
S. H.
Choi
,
C.
Risko
,
M. C. R.
Delgado
,
B.
Kim
,
J.-L.
Brédas
, and
C. D.
Frisbie
,
J. Am. Chem. Soc.
132
,
4358
(
2010
).
13.
H.
Song
,
Y.
Kim
,
H.
Jeong
,
M. A.
Reed
, and
T.
Lee
,
J. Phys. Chem. C
114
,
20431
(
2010
).
14.
H.
Song
,
Y.
Kim
,
H.
Jeong
,
M. A.
Reed
, and
T.
Lee
,
J. Appl. Phys.
109
,
102419
(
2011
).
15.
G.
Wang
,
Y.
Kim
,
S.-I.
Na
,
Y. H.
Kahng
,
J.
Ku
,
S.
Park
,
Y. H.
Jang
,
D.-Y.
Kim
, and
T.
Lee
,
J. Phys. Chem. C
115
,
17979
(
2011
).
16.
D.
Xiang
,
Y.
Zhang
,
F.
Pyatkov
,
A.
Offenhäusser
, and
D.
Mayer
,
Chem. Commun.
47
,
4760
(
2011
).
17.
S.
Guo
,
J.
Hihath
,
I.
Díez-Pérez
, and
N.
Tao
,
J. Am. Chem. Soc.
133
,
19189
(
2011
).
18.
G.
Ricoeur
,
S.
Lenfant
,
D.
Guérin
, and
D.
Vuilaume
,
J. Phys. Chem. C
116
,
20722
(
2012
).
19.
A.
Tan
,
J.
Balachandran
,
B. D.
Dunietz
,
S. Y.
Jang
,
V.
Gavini
, and
P.
Reddy
,
Appl. Phys. Lett.
101
,
243107
(
2012
).
20.
S.
Guo
,
G.
Zhou
, and
N.
Tao
,
Nano Lett.
13
,
4326
(
2013
).
21.
M. L.
Trouwborst
,
C. A.
Martin
,
R. H. M.
Smit
,
C. M.
Guédon
,
T. A.
Baart
,
S. J.
van der Molen
, and
J. M.
van Ruitenbeek
,
Nano Lett.
11
,
614
(
2011
).
22.
E. H.
Huisman
,
C. M.
Guédon
,
B. J.
van Wees
, and
S. J.
van der Molen
,
Nano Lett.
9
,
3909
(
2009
).
23.
I.
Bâldea
,
Europhys. Lett.
98
,
17010
(
2012
).
24.
M.
Araidai
and
M.
Tsukada
,
Phys. Rev. B
81
,
235114
(
2010
).
25.
Y.
Meir
and
N. S.
Wingreen
,
Phys. Rev. Lett.
68
,
2512
(
1992
).
26.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
27.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
, A
1133
(
1965
).
28.
Y.
Xue
,
S.
Datta
, and
M. A.
Ratner
,
Chem. Phys.
281
,
151
(
2002
).
29.
M.
Brandbyge
,
J.-L.
Mozos
,
P.
Ordejón
,
J.
Taylor
, and
K.
Stokbro
,
Phys. Rev. B
65
,
165401
(
2002
).
30.
J.
Zhang
,
S.
Hou
,
R.
Li
,
Z.
Qian
,
R.
Han
,
Z.
Shen
,
X.
Zhao
, and
Z.
Xue
,
Nanotechnology
16
,
3057
(
2005
).
31.
R.
Li
,
J.
Zhang
,
S.
Hou
,
Z.
Qian
,
Z.
Shen
,
X.
Zhao
, and
Z.
Xue
,
Chem. Phys.
336
,
127
(
2007
).
32.
A. R.
Rocha
,
V. M.
Garcia-Suarez
,
S. W.
Bailey
,
C. J.
Lambert
,
J.
Ferrer
,
S.
Sanvito
,
Nat. Mater.
4
,
335
(
2005
).
33.
A. R.
Rocha
,
V. M.
García-Suárez
,
S.
Bailey
,
C.
Lambert
,
J.
Ferrer
, and
S.
Sanvito
,
Phys. Rev. B
73
,
085414
(
2006
).
34.
I.
Rungger
and
S.
Sanvito
,
Phys. Rev. B
78
,
035407
(
2008
).
35.
K.
Wu
,
M.
Bai
,
S.
Sanvito
, and
S.
Hou
,
J. Chem. Phys.
139
,
194703
(
2013
).
36.
S.
Kaneko
,
T.
Nakazumi
, and
M.
Kiguchi
,
J. Phys. Chem. Lett.
1
,
3520
(
2010
).
37.
D.
den Boer
,
O. I.
Shklyarevskii
,
M. J. J.
Coenen
,
M.
van der Maas
,
T. P. J.
Peters
,
J. A. A. W.
Elemans
, and
S.
Speller
,
J. Phys. Chem. C
115
,
8295
(
2011
).
38.
S. V.
Aradhya
,
M.
Frei
,
A.
Halbritter
, and
L.
Ventataraman
,
ACS Nano
7
,
3706
(
2013
).
39.
T.
Kim
,
H.
Vázquez
,
M. S.
Hybertsen
, and
L.
Ventataraman
,
Nano Lett.
13
,
3358
(
2013
).
40.
M.
Kiguchi
,
S.
Miura
,
K.
Hara
,
M.
Sawamura
, and
K.
Murakoshi
,
Appl. Phys. Lett.
91
,
053110
(
2007
).
41.
M.
Kiguchi
,
O.
Tal
,
S.
Wohlthat
,
F.
Pauly
,
M.
Krieger
,
D.
Djukic
,
J. C.
Cuevas
, and
J. M.
van Ruitenbeek
,
Phys. Rev. Lett.
101
,
046801
(
2008
).
42.
Y.
Kim
,
H.
Song
,
F.
Strigl
,
H.-F.
Pernau
,
T.
Lee
, and
E.
Scheer
,
Phys. Rev. Lett.
106
,
196804
(
2011
).
43.
F.
Prins
,
A. J.
Shaikh
,
J. H.
van Esch
,
R.
Eelkema
, and
H. S. J.
van der Zant
,
Phys. Chem. Chem. Phys.
13
,
14297
(
2011
).
44.
M.
Bai
,
J.
Liang
,
L.
Xie
,
S.
Sanvito
,
B.
Mao
, and
S.
Hou
,
J. Chem. Phys.
136
,
104701
(
2012
).
45.
H.
Rong
,
S.
Frey
,
Y.
Yang
,
M.
Zharnikov
,
M.
Buck
,
M.
Wühn
,
C.
Wöll
, and
G.
Helmchen
,
Langmuir
17
,
1582
(
2001
).
46.
D. Y.
Petrovykh
,
H.
Kimura-Suda
,
A.
Opdahl
,
L. J.
Richter
,
M. J.
Tarlov
, and
L. J.
Whitman
,
Langmuir
22
,
2578
(
2006
).
47.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
48.
N.
Troullier
and
J.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
49.
S.
García-Gil
,
A.
García
,
N.
Lorente
, and
P.
Ordejón
,
Phys. Rev. B
79
,
075441
(
2009
).
50.
K.
Wu
,
M.
Bai
,
S.
Sanvito
, and
S.
Hou
,
Nanotechnology
24
,
025203
(
2013
).
51.
J.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
52.
H. B.
Michaelson
,
J. Appl. Phys.
48
,
4729
(
1977
).
53.
See supplementary material at http://dx.doi.org/10.1063/1.4886378 for the bias polarity dependence of the transition voltage of the asymmetric Ag-vacuum-Ag junction, the atomic structure and the equilibrium transmission spectrum of the Pt-vacuum-Pt junction with the two electrode surfaces decorated with a four-atom platinum cluster in the pyramid configuration, eigenchannel analysis the Ag-biphenyl thiol-gold junction in which the phenyl ring is connected to the Au(111) surface directly, the atomic structure and the transport properties of the Pt-biphenyl thiol-Pt junction with the sulfur atom binding at the hollow site of the Pt(111) surface.
54.
D. A.
Papaconstantopoulos
,
Handbook of the Band Structure of Elemental Solids
(
Plenum Press
,
New York
,
1986
).
55.
R.
Li
,
S.
Hou
,
J.
Zhang
,
Z.
Qian
,
Z.
Shen
, and
X.
Zhao
,
J. Chem. Phys.
125
,
194113
(
2006
).
56.
M.
Paulsson
and
M.
Brandbyge
,
Phys. Rev. B
76
,
115117
(
2007
).

Supplementary Material

You do not currently have access to this content.