A systematic examination of the computational expense and accuracy of Symmetry-Adapted Perturbation Theory (SAPT) for the prediction of non-covalent interaction energies is provided with respect to both method [SAPT0, DFT-SAPT, SAPT2, SAPT2+, SAPT2+(3), and SAPT2+3; with and without CCD dispersion for the last three] and basis set [Dunning cc-pVDZ through aug-cc-pV5Z wherever computationally tractable, including truncations of diffuse basis functions]. To improve accuracy for hydrogen-bonded systems, we also include two corrections based on exchange-scaling (sSAPT0) and the supermolecular MP2 interaction energy (δMP2). When considering the best error performance relative to computational effort, we recommend as the gold, silver, and bronze standard of SAPT: SAPT2+(3)δMP2/aug-cc-pVTZ, SAPT2+/aug-cc-pVDZ, and sSAPT0/jun-cc-pVDZ. Their respective mean absolute errors in interaction energy across the S22, HBC6, NBC10, and HSG databases are 0.15 (62.9), 0.30 (4.4), and 0.49 kcal mol−1 (0.03 h for adenine·thymine complex).

1.
E. A.
Meyer
,
R. K.
Castellano
, and
F.
Diederich
,
Angew. Chem., Int. Ed. Engl.
42
,
1210
(
2003
).
2.
L. M.
Salonen
,
M.
Ellermann
, and
F.
Diederich
,
Angew. Chem., Int. Ed. Engl.
50
,
4808
(
2011
).
3.
N. J.
Singh
,
H. M.
Lee
,
I.
Hwang
, and
K. S.
Kim
,
Supramol. Chem.
19
,
321
(
2007
).
4.
K.
Müller-Dethlefs
and
P.
Hobza
,
Chem. Rev.
100
,
143
(
2000
).
5.
K. E.
Riley
,
M.
Pitoňák
,
P.
Jurečka
, and
P.
Hobza
,
Chem. Rev.
110
,
5023
(
2010
).
6.
C. D.
Sherrill
,
Acc. Chem. Res.
46
,
1020
(
2013
).
7.
S.
Grimme
,
Chem. Eur. J.
18
,
9955
(
2012
).
8.
T. H.
Dunning
,
J. Phys. Chem. A
104
,
9062
(
2000
).
9.
S.
Grimme
,
J. Comput. Chem.
25
,
1463
(
2004
).
10.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
11.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
12.
S.
Grimme
,
J. Chem. Phys.
118
,
9095
(
2003
).
13.
O.
Marchetti
and
H.
Werner
,
J. Phys. Chem. A
113
,
11580
(
2009
).
14.
K.
Ragavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
15.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
16.
E. G.
Hohenstein
and
C. D.
Sherrill
,
WIREs Comput. Mol. Sci.
2
,
304
(
2012
).
17.
T. J.
Lee
and
G. E.
Scuseria
,
Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy
(
Springer
,
Dordrecht
,
1995
).
18.
P.
Jurečka
,
J.
Šponer
,
J.
Černý
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
19.
T.
Takatani
,
E. G.
Hohenstein
,
M.
Malagoli
,
M. S.
Marshall
, and
C. D.
Sherrill
,
J. Chem. Phys.
132
,
144104
(
2010
).
20.
M. S.
Marshall
,
L. A.
Burns
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
194102
(
2011
).
21.
L.
Gráfová
,
M.
Pitoňák
,
J.
Řezáč
, and
P.
Hobza
,
J. Chem. Theory Comput.
6
,
2365
(
2010
).
22.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
2427
(
2011
).
23.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
3466
(
2011
).
24.
K. S.
Thanthiriwatte
,
E. G.
Hohenstein
,
L. A.
Burns
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
7
,
88
(
2011
).
25.
M. O.
Sinnokrot
and
C. D.
Sherrill
,
J. Phys. Chem. A
110
,
10656
(
2006
).
26.
A. L.
Ringer
,
M. S.
Figgs
,
M. O.
Sinnokrot
, and
C. D.
Sherrill
,
J. Phys. Chem. A
110
,
10822
(
2006
).
27.
C. D.
Sherrill
,
T.
Takatani
, and
E. G.
Hohenstein
,
J. Phys. Chem. A
113
,
10146
(
2009
).
28.
Y.
Geng
,
T.
Takatani
,
E. G.
Hohenstein
, and
C. D.
Sherrill
,
J. Phys. Chem. A
114
,
3576
(
2010
).
29.
J. C.
Faver
,
M. L.
Benson
,
X.
He
,
B. P.
Roberts
,
B.
Wang
,
M. S.
Marshall
,
M. R.
Kennedy
,
C. D.
Sherrill
, and
K. M.
Merz
,
J. Chem. Theory Comput.
7
,
790
(
2011
).
30.
L. A.
Burns
,
Á.
Vázquez-Mayagoitia
,
B. G.
Sumpter
, and
C. D.
Sherrill
,
J. Chem. Phys.
134
,
084107
(
2011
).
31.
K. E.
Riley
,
J. A.
Platts
,
J.
Rezac
,
P.
Hobza
, and
J. G.
Hill
,
J. Phys. Chem. A
116
,
4159
(
2012
).
32.
A. J.
Stone
,
The Theory of Intermolecular Forces
, 2nd ed. (
Oxford University Press
,
Oxford
,
2013
).
33.
B.
Jeziorski
,
R.
Moszynski
, and
K.
Szalewicz
,
Chem. Rev.
94
,
1887
(
1994
).
34.
E. G.
Hohenstein
and
C. D.
Sherrill
,
J. Chem. Phys.
132
,
184111
(
2010
).
35.
E. G.
Hohenstein
and
C. D.
Sherrill
,
J. Chem. Phys.
133
,
014101
(
2010
).
36.
E. G.
Hohenstein
,
R. M.
Parrish
,
C. D.
Sherrill
,
J. M.
Turney
, and
H. F.
Schaefer
,
J. Chem. Phys.
135
,
174107
(
2011
).
37.
E. G.
Hohenstein
and
C. D.
Sherrill
,
J. Chem. Phys.
133
,
104107
(
2010
).
38.
R. M.
Parrish
,
E. G.
Hohenstein
, and
C. D.
Sherrill
,
J. Chem. Phys.
139
,
174102
(
2013
).
39.
H. L.
Williams
and
C. F.
Chabalowski
,
J. Phys. Chem. A
105
,
646
(
2001
).
40.
A. J.
Misquitta
and
K.
Szalewicz
,
Chem. Phys. Lett.
357
,
301
(
2002
).
41.
E.
Papajak
,
J.
Zheng
,
X.
Xu
,
H. R.
Leverentz
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
7
,
3027
(
2011
).
42.
M.
Pitoňák
,
K. E.
Riley
,
P.
Neogrády
, and
P.
Hobza
,
ChemPhysChem
9
,
1636
(
2008
).
43.
P.
Lowdin
,
Int. J. Quantum Chem.
28
,
19
(
1985
).
44.
Strictly speaking, a Pauling point refers to a simple theoretical model which has a good agreement with experiment through cancellation of error. We use the term in this article to refer specifically to model chemistries which provide good agreement to high-quality reference data relative to computational cost.
45.
B.
Jeziorski
,
R.
Moszynski
,
A.
Ratkiewicz
,
S.
Rybak
, and
K.
Szalewicz
, “
SAPT: A program for many-body symmetry-adapted perturbation theory calculations of intermolecular interaction energies
,” in
Methods and Techniques in Computational Chemistry: METECC94
,
Medium-Size Systems
Vol.
B
, edited by
E.
Clementi
(
STEF
,
Cagliari
,
1993
), p.
79
.
46.
H. L.
Williams
,
K.
Szalewicz
,
R.
Moszynski
, and
B.
Jeziorski
,
J. Chem. Phys.
103
,
4586
(
1995
).
47.
E. G.
Hohenstein
, “
Implementation and applications of density-fitted symmetry-adapted perturbation theory
,” Ph.D. thesis (
Georgia Institute of Technology
, Atlanta, GA,
2011
).
48.
T.
Takatani
,
E. G.
Hohenstein
, and
C. D.
Sherrill
,
J. Chem. Phys.
128
,
124111
(
2008
).
49.
K. U.
Lao
and
J. M.
Herbert
,
J. Phys. Chem. A
116
,
3042
(
2012
).
50.
Terms in turquoise-blue in Fig. 1 (i.e., all exchange-including terms except
$E_{\text{exch}}^{(10)}$
Eexch(10)
) have applied to them an exchange-scaling factor defined both in the legend of Fig. 1 and as pEX in Eq. (6). This factor depends on an exponent, α, that by default is 1, the most physically justified choice. (Exchange-scaling is never applied to DFT-SAPT, α = 0.) Properly, the non-unity factor of pEX(1) should be present in front of each exchange term in Eqs. (2)–(5), (8), (11), (12), (17), (18), and (20) that is turquoise-blue in Fig. 1. Effectively, however, when only the total interaction energy is of interest, not the physical components, scaling by pEX is largely canceled out by δEHF or δEMP2. [Exchange-scaling is wholely canceled for SAPT2+δMP2, SAPT2+(CCD)δMP2, SAPT2+(3)δMP2, and SAPT2+(3)(CCD)δMP2.] Reading off Fig. 1, exchange-scaling is canceled whenever the term is within the blue-shaded shape bounding the HF IE or (if δMP2 is applied) is within the pink-shaded shape bounding the MP2 correlation IE. For example, one need only scale
$E_{\text{exch-disp}}^{(20)}$
Eexch-disp(20)
to reproduce SAPT0 results in this work or
$E_{\text{exch-disp}}^{(30)}$
Eexch-disp(30)
to reproduce SAPT2+3δMP2. Wavefunction-SAPT methods where α ≠ 1 are designated sSAPT. The only useful such method is sSAPT0 (exchange-scaled variants of higher order SAPT levels were considered and rejected) that employs α = 3 to scale the two exchange terms while evaluating
$\delta E_{\text{HF}}^{(2)}$
δEHF(2)
with α = 1 so as to not cancel out
$E_{\text{exch-ind}}^{(20)}$
Eexch-ind(20)
.
51.
E. G.
Hohenstein
,
H. M.
Jaeger
,
E. J.
Carrell
,
G. S.
Tschumper
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
7
,
2842
(
2011
).
52.
R.
Bukowski
,
W.
Cencek
,
P.
Jankowski
,
B.
Jeziorski
,
M.
Jeziorska
,
T.
Korona
,
S. A.
Kucharski
,
V. F.
Lotrich
,
A. J.
Misquitta
,
R.
Moszynski
,
K.
Patkowski
,
R.
Podeszwa
,
F.
Rob
,
S.
Rybak
,
K.
Szalewicz
,
H. L.
Williams
,
R. J.
Wheatley
,
P. E. S.
Wormer
, and
P. S.
Zuchowski
, SAPT2012: An ab initio program for many-body symmetry-adapted perturbation theory calculations of intermolecular interaction energies. See http://www.physics.udel.edu/~szalewic/SAPT.
53.
K.
Patkowski
,
K.
Szalewicz
, and
B.
Jeziorski
,
J. Chem. Phys.
125
,
154107
(
2006
).
54.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
55.
A.
Hesselmann
and
G.
Jansen
,
Phys. Chem. Chem. Phys.
5
,
5010
(
2003
).
56.
A.
Heßelmann
,
G.
Jansen
, and
M.
Schütz
,
J. Chem. Phys.
122
,
014103
(
2005
).
57.
A. J.
Misquitta
,
B.
Jeziorski
, and
K.
Szalewicz
,
Phys. Rev. Lett.
91
,
033201
(
2003
).
58.
A. J.
Misquitta
,
R.
Podeszwa
,
B.
Jeziorski
, and
K.
Szalewicz
,
J. Chem. Phys.
123
,
214103
(
2005
).
59.
R.
Podeszwa
,
J. Chem. Phys.
132
,
044704
(
2010
).
60.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
61.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
62.
E.
Papajak
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
7
,
10
(
2011
).
63.
See supplementary material at http://dx.doi.org/10.1063/1.4867135 for tables elaborating the reference CBS extrapolation level for individual database members; defining summary error statistics; replicating Tables III–V in unabridged format; summarizing SAPT model chemistries over all databases; compiling subset results for each database and model chemistry; and a staggering number of tables detailing interaction energies.
64.
It has come to our attention that SAPT results for the S22 database in the supplementary material of Ref. 65 were mislabeled; the values are SAPT2+/aug-cc-pVDZ while the implied label is SAPT2+(3)/aug-cc-pVTZ. For actual S22 SAPT2+(3)/aug-cc-pVTZ interaction energies and components, consult Tables 27 and 101 in the supplementary material of this work.
65.
J. C.
Flick
,
D.
Kosenkov
,
E. G.
Hohenstein
,
C. D.
Sherrill
, and
L. V.
Slipchenko
,
J. Chem. Theory Comput.
8
,
2835
(
2012
).
66.
J. M.
Turney
,
A. C.
Simmonett
,
R. M.
Parrish
,
E. G.
Hohenstein
,
F. A.
Evangelista
,
J. T.
Fermann
,
B. J.
Mintz
,
L. A.
Burns
,
J. J.
Wilke
,
M. L.
Abrams
,
N. J.
Russ
,
M. L.
Leininger
,
C. L.
Janssen
,
E. T.
Seidl
,
W. D.
Allen
,
H. F.
Schaefer
,
R. A.
King
,
E. F.
Valeev
,
C. D.
Sherrill
, and
T. D.
Crawford
,
WIREs Comput. Mol. Sci.
2
,
556
(
2012
).
67.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al, MOLPRO, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
68.
J. A.
Pople
, in
Energy, Structure and Reactivity: Proceedings of the 1972 Boulder Summer Research Conference on Theoretical Chemistry
, edited by
D. W.
Smith
and
W. B.
McRae
(
Wiley
,
New York
,
1973
). p.
51
.
69.
L. A.
Burns
,
M. S.
Marshall
, and
C. D.
Sherrill
, “
Appointing silver and bronze standards for noncovalent interactions: a comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches
” (unpublished).
70.
DFT-SAPT timings are included as a qualitative gauge of efficiency. A serial mode of operation is required for that code in molpro, and although both DFT-SAPT and wavefunction SAPT jobs were run in isolation on the same workstation, wavefunction SAPT timings have the advantage of threading over six cores in psi4. The erratic efficiency traces for DFT-SAPT with respect to basis set size are largely due to the significant variation in number of cycles required to converge the monomer LHF computations.

Supplementary Material

You do not currently have access to this content.