Building upon past work on the phase diagram of Janus fluids [F. Sciortino, A. Giacometti, and G. Pastore, Phys. Rev. Lett.103, 237801 (2009)], we perform a detailed study of integral equation theory of the Kern-Frenkel potential with coverage that is tuned from the isotropic square-well fluid to the Janus limit. An improved algorithm for the reference hypernetted-chain (RHNC) equation for this problem is implemented that significantly extends the range of applicability of RHNC. Results for both structure and thermodynamics are presented and compared with numerical simulations. Unlike previous attempts, this algorithm is shown to be stable down to the Janus limit, thus paving the way for analyzing the frustration mechanism characteristic of the gas-liquid transition in the Janus system. The results are also compared with Barker-Henderson thermodynamic perturbation theory on the same model. We then discuss the pros and cons of both approaches within a unified treatment. On balance, RHNC integral equation theory, even with an isotropic hard-sphere reference system, is found to be a good compromise between accuracy of the results, computational effort, and uniform quality to tackle self-assembly processes in patchy colloids of complex nature. Further improvement in RHNC however clearly requires an anisotropic reference bridge function.

1.
A.
Walther
and
A. H. E.
Müller
,
Soft Matter
4
,
663
(
2008
).
2.
A. B.
Pawar
and
I.
Kretzschmar
,
Macromol. Rapid Commun.
31
,
150
(
2010
).
4.
S. C.
Glotzer
and
M. J.
Solomon
,
Nature Mater.
6
,
557
(
2007
).
5.
G. M.
Whitesides
and
M.
Boncheva
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
4769
(
2002
);
[PubMed]
G. M.
Whitesides
and
B.
Grzybowski
,
Science
295
,
2418
(
2002
).
[PubMed]
6.
F.
Sciortino
,
A.
Giacometti
, and
G.
Pastore
,
Phys. Rev. Lett.
103
,
237801
(
2009
).
7.
F.
Sciortino
,
A.
Giacometti
, and
G.
Pastore
,
Phys. Chem. Chem. Phys.
12
,
11869
(
2010
).
8.
C. G.
Gray
and
K. E.
Gubbins
,
Theory of Molecular Fluids. Volume 1: Fundamentals
(
Clarendon Press
,
Oxford
,
1984
).
9.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic
,
New York
,
1986
).
10.
N.
Kern
and
D.
Frenkel
,
J. Chem. Phys.
118
,
9882
(
2003
).
11.
W. G.
Chapman
,
G.
Jackson
, and
K. E.
Gubbins
,
Mol. Phys.
65
,
1057
(
1988
).
12.
A.
Giacometti
,
F.
Lado
,
J.
Largo
,
G.
Pastore
, and
F.
Sciortino
,
J. Chem. Phys.
131
,
174114
(
2009
).
13.
A.
Giacometti
,
F.
Lado
,
J.
Largo
,
G.
Pastore
, and
F.
Sciortino
,
J. Chem. Phys.
132
,
174110
(
2010
).
14.
A.
Giacometti
,
G.
Pastore
, and
F.
Lado
,
Mol. Phys.
107
,
555
(
2009
).
15.
C.
Gögelein
,
F.
Romano
,
F.
Sciortino
, and
A.
Giacometti
,
J. Chem. Phys.
136
,
094512
(
2012
).
17.
Y.
Rosenfeld
and
N. W.
Ashcroft
,
Phys. Rev. A
20
,
1208
(
1979
).
18.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
,
2856
(
1967
).
19.
J. A.
Barker
and
D.
Henderson
,
Rev. Mod. Phys.
48
,
587
(
1976
).
22.
The present formulation of the potential follows Ref. 15 and formally differs from that given in Refs. 10,12,13 that, strictly speaking, is slightly inconsistent. The actual form used in all numerical calculations was however always correct.
23.
M. S.
Green
,
J. Chem. Phys.
33
,
1403
(
1960
);
M.
Klein
and
M. S.
Green
,
J. Chem. Phys.
39
,
1367
(
1963
). Green classified the diagrams in the density expansion of g(r)eβϕ(r) for a spherically symmetric potential ϕ(r) by analogy with electric circuits as “series,” “parallel,” or “bridge,” the last because of the resemblance of its first diagram to a Wheatstone bridge. The “parallel” diagrams can be summed in direct space and disappear. The name “series” for γ(r) = h(r) − c(r) is nowadays seldom used, but the “bridge” name incongruously lives on.
24.
F.
Lado
,
Phys. Lett. A
89
,
196
(
1982
). The multiplicative constants ρ and σ0 in Eq. (24) can obviously be eliminated from this equation. But in numerical calculations, the right-hand-side is never zero but rather a number that is “small enough.” Writing the left-hand-side in dimensionless form makes the standard of “small enough” more consistent across thermodynamic states.
25.
L.
Verlet
and
J. J.
Weis
,
Phys. Rev. A
5
,
939
(
1972
).
26.
D.
Henderson
and
E. W.
Grundke
,
J. Chem. Phys.
63
,
601
(
1975
).
27.
A. A.
Broyles
,
J. Chem. Phys.
33
,
456
(
1960
).
28.
See the Appendix in
K. C.
Ng
,
J. Chem. Phys.
61
,
2680
(
1974
).
29.
30.
S.
Labík
,
A.
Malijevský
, and
P.
Voňka
,
Mol. Phys.
56
,
709
(
1985
).
32.
F.
Lado
,
J. Chem. Phys.
47
,
4828
(
1967
).
33.
D.
Henderson
and
J. A.
Barker
,
Physical Chemistry: An Advanced Treatise
(
Academic Press
,
New York
,
1971
), Vol.
VIIIA
, p.
377
.
34.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
35.
B.
Martínez-Haya
,
A.
Cuetos
, and
S.
Lago
,
Phys. Rev. E
67
,
051201
(
2003
);
see also
I.
Nezbeda
and
T.
Boublik
,
Czech. J. Phys.
28
,
353
(
1978
).
36.
See Appendix  B in
G.
Stell
,
G. N.
Patey
, and
J. S.
Høye
,
Adv. Chem. Phys.
48
,
183
(
1981
).
37.
L.
Vega
,
E.
de Miguel
,
L. F.
Rull
,
G.
Jackson
, and
I. A.
McLure
,
J. Chem. Phys.
96
,
2296
(
1992
).
38.
F.
del Río
,
E.
Ávalos
,
R.
Espíndola
,
L. F.
Rull
,
G.
Jackson
, and
S.
Lago
,
Mol. Phys.
100
,
2531
(
2002
).
39.
J. J.
Weis
and
D.
Levesque
,
Phys. Rev. E
48
,
3728
(
1993
).
You do not currently have access to this content.