We study both the rare gas hydride anions, RG–H (RG = He–Rn) and Group 2 (Group IIa) metal hydride anions, MIIaH (MIIa = Be–Ra), calculating potential energy curves at the CCSD(T) level with augmented quadruple and quintuple basis sets, and extrapolating the results to the basis set limit. We report spectroscopic parameters obtained from these curves; additionally, we study the Be–He complex. While the RG–H and Be–He species are weakly bound, we show that, as with the previously studied BeH and MgH species, the other MIIaH species are strongly bound, despite the interactions nominally also being between two closed shell species: M(ns2) and H(1s2). We gain insight into the interactions using contour plots of the electron density changes and population analyses. For both series, the calculated dissociation energy is significantly less than the ion/induced-dipole attraction term, confirming that electron repulsion is important in these species; this effect is more dramatic for the MIIaH species than for RG–H. Our analyses lead us to conclude that the stronger interaction in the case of the MIIaH species arises from sp and spd hybridization, which allows electron density on the MIIa atom to move away from the incoming H.

1.
M.
Verdicchio
,
G. L.
Bendazzoli
,
S.
Evangelisti
, and
T.
Leininger
,
J. Phys. Chem. A
117
,
192
(
2013
).
2.
CRC Handbook of Chemistry and Physics
, edited by
W. M.
Haynes
, 94th ed. (Internet version) (
CRC Press/Taylor and Francis
,
Boca Raton, FL
,
2014
).
3.
J.
Kenney
and
J.
Simons
,
J. Chem. Phys.
62
,
592
(
1975
).
4.
P.
Rosmus
and
W.
Meyer
,
J. Chem. Phys.
69
,
2745
(
1978
).
5.
G.
Frenking
and
W.
Koch
,
J. Chem. Phys.
84
,
3224
(
1986
).
6.
M.
Polašek
and
R.
Zahradník
,
Int. J. Quantum Chem.
54
,
93
(
1995
).
7.
J.
Koput
,
J. Chem. Phys.
139
,
104309
(
2013
).
8.
R.
Rackwitz
,
D.
Feldman
,
H. J.
Kaiser
, and
E.
Heinicke
,
Z. Naturforsch.
32a
,
594
(
1977
).
9.
P.
Rosmus
and
W.
Meyer
,
J. Chem. Phys.
69
,
2745
(
1978
).
10.
G. L.
Bendazzoli
,
S.
Evangelisti
, and
F.
Passarinin
,
Chem. Phys.
215
,
217
(
1997
).
11.
A. S.
Shalabi
,
K. M.
Eid
,
M. A.
Kamel
, and
A. A.
El-Barbery
,
Phys. Lett. A
239
,
87
(
1998
).
12.
V.
Vallet
,
G. L.
Bendazzoli
, and
S.
Evangelisti
,
Chem. Phys.
263
,
33
(
2001
).
13.
F.
Robincheaux
,
Phys. Rev. A
60
,
1706
(
1999
).
14.
Y.
Li
and
C. D.
Lin
,
Phys. Rev. A
60
,
2009
(
1999
).
15.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al., MOLPRO, version 2012.1, a package of ab initio programs,
2012
, see http://www.molpro.net.
16.
B.
Prascher
,
D. E.
Woon
,
K. A.
Peterson
,
T. H.
Dunning
 Jr.
, and
A. K.
Wilson
,
Theor. Chem. Acc.
128
,
69
(
2011
).
17.
K. A.
Peterson
, personal communication (
2013
).
18.
I. S.
Lim
,
H.
Stoll
, and
P.
Schwerdtfeger
,
J. Chem. Phys.
124
,
034107
(
2006
).
19.
M.
Kaupp
,
P. v. R.
Schleyer
,
H.
Stoll
, and
H.
Preuss
,
J. Chem. Phys.
94
,
1360
(
1991
).
20.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
,
Chem. Phys. Lett.
302
,
437
(
1999
).
21.
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
22.
D. E.
Woon
and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
100
,
2975
(
1994
).
23.
D. E.
Woon
and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
).
24.
K. A.
Peterson
and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
117
,
10548
(
2002
).
25.
K. A.
Peterson
,
D.
Figgen
,
E.
Goll
,
H.
Stoll
, and
M.
Dolg
,
J. Chem. Phys.
119
,
11113
(
2003
).
26.
K. A.
Peterson
and
K. E.
Yousaf
,
J. Chem. Phys.
133
,
174116
(
2010
).
27.
R. J. Le
Roy
, Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels, University of Waterloo Chemical Physics Research Report No. CP-663,
2007
; see http://leroy.uwaterloo.ca/programs/.
28.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
29.
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
,
J. Chem. Phys.
83
,
735
(
1985
).
30.
R. F. W.
Bader
Atoms in Molecules — A Quantum Theory
(
Oxford University Press
,
Oxford, U.K.
,
1990
).
31.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT,
2010
.
32.
AIMAll, T. A. Keith and T. K. Gristmill Software, Overland Park, KS,
2011
; see aim.tkgristmill.com.
33.
T. A.
Keith
and
M. J.
Frisch
,
J. Phys. Chem. A
115
,
12879
(
2011
).
34.
G.
Schaftenaar
and
J. H.
Noordik
, “
Molden: a pre- and post-processing program for molecular and electronic structures
,”
J. Comput.-Aided Mol. Des.
14
,
123
(
2000
).
35.
See supplementary material at http://dx.doi.org/10.1063/1.4865749 for the interaction potentials, which are given fully as separate files; these are calculated as noted in the text, and consist of a series of interaction energies (Eh) calculated at a wide range of internuclear separations (Å).
36.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quantum Chem.
36
,
199
(
1989
).
37.
A. M.
Gardner
,
R. J.
Plowright
,
M. J.
Watkins
,
T. G.
Wright
, and
W. H.
Breckenridge
,
J. Chem. Phys.
132
,
184301
(
2010
).
38.
P.
Soldán
,
E. P. F.
Lee
, and
T. G.
Wright
,
Phys. Chem. Chem. Phys.
3
,
4661
(
2001
).
39.
S. H.
Patil
and
K. H.
Tang
,
J. Chem. Phys.
106
,
2298
(
1997
).
40.
T. G.
Wright
and
W. H.
Breckenridge
,
J. Phys. Chem. A
114
,
3182
(
2010
).
41.
J.
Emsley
,
The Elements
, 3rd ed. (
Clarendon Press
,
Oxford
,
1998
).
42.
A.
Andrejeva
,
A. M.
Gardner
,
J. B.
Graneek
,
R. J.
Plowright
,
W. H.
Breckenridge
, and
T. G.
Wright
,
J. Phys. Chem. A
117
,
13578
(
2013
).
43.
A. W. K.
Leung
and
W. H.
Breckenridge
,
J. Chem. Phys.
111
,
9197
(
1999
).
45.
A. M.
Gardner
,
C. D.
Withers
,
T. G.
Wright
,
K. I.
Kaplan
,
C. Y. N.
Chapman
,
L. A.
Viehland
,
E. P. F.
Lee
, and
W. H.
Breckenridge
,
J. Chem. Phys.
132
,
054302
(
2010
).
46.
D.
Cremer
and
E.
Kraka
,
Angew. Chem., Int. Ed. Eng.
23
,
627
(
1984
).

Supplementary Material

You do not currently have access to this content.